

DEPARTMENT OF THE AIR FORCE 377TH AIR BASE WING (AFGSC)

JAN 2 0 2022

Colonel Jason F. Vattioni Commander 377th Air Base Wing 2000 Wyoming Blvd SE Kirtland Air Force Base NM 87117

Mr. Isreal Tavarez Environmental Health Manager Albuquerque Environmental Health Department Air Quality Division P.O. Box 1293 Albuquerque NM 87103

Dear Mr. Tavarez

Kirtland Air Force Base (KAFB) is submitting a Title V Operating Permit Renewal Application for Title V Operating Permit #527-RN1. The term of Permit 527-RN1 is five (5) years, and will expire on January 22, 2023, which is five years from the date of issuance, pursuant to 20.11.42.12.C.(2) New Mexico Administrative Code (NMAC). This renewal application is due twelve (12) months prior to the date of permit expiration, pursuant to 20.11.42.12.A.(2)(a)(ii) NMAC.

The attached Title V Operating Permit Renewal Application includes the addition of two new emergency generators, one new non-emergency generator, one soil vapor extraction unit and the removal of two emergency generators. A brief summary of this Title V Permit Renewal Application is provided below.

This renewal application is being submitted in accordance with the instructions in the Albuquerque Environmental Health Department (AEHD) Air Quality Division (AQD) Guidelines for Title V Operating Permit Renewal Applications. Below is a list of attachments included with this application.

Attachment A - AEHD AQD Operating Permit Application Forms

Attachment B – Process Flow Diagrams

Attachment C – Emission Calculations

Attachment D - Contents of Permit Application

Attachment E – Site Map

Attachment F – Insignificant Sources

Attachment G – Air Dispersion Modeling

KAFB is also including Greenhouse Gases (GHGs) for applicable units included in this permit renewal as required under the Environmental Protection Agency's Tailoring Rule. The Tailoring Rule requires that after 2 January 2011, sources with Title V permits must address GHG requirements when applying for new, renewed, or revised permits. Emissions of GHGs included in this application were based on the permitted operating limits of each emission source. Emission calculation spreadsheets are included in Attachment C for the sources included in this application.

Attachment D, Table D-1 contains a Source Registration and Construction Permit Cross Reference Table that lists all new and modified sources that are included in this permit renewal application along with the corresponding process equipment number from the permit and KAFB Unit Identification (ID) number. Attachment D, Table D-2 includes a summary of required application contents and where those contents are located in the Title V Permit Renewal Application. Attachment D, Table D-3 includes a summary of applicable requirements and the KAFB compliance status for each applicable requirement.

My point of contact for any questions regarding this submittal is Ms. Andria Cuevas, KAFB Air Program Manager, at (505) 846-2522 or by email andria.cuevas.1@us.af.mil.

Sincerely

VATTIONI, Colonel, USAF ASON/F Commander

Attachment:
 Kirtland AFB Title V Permit Renewal Application, Jan 22

Kirtland Air Force Base

20.11.42 NMAC

Title V Permit Renewal Application

March 2022

377 MSG/CEIEC

Kirtland AFB, New Mexico

Table of Contents

1.0	General Information1-1
1.1	General Facility Description1-1
1.2	Permit Application Content1-3
1.3	Permit Shield Request
2.0	Proposed Exemptions2-1
2.1	Exempt Activities2-1
3.0	Fee Assessment
4.0	Emissions Information
4.1	Process Flow Sheets
4.2	Calculations
4.3	Summary of Title V Source Emissions
5.0	Work Practice Standards or Limitations
5.1	Internal Combustion Units
5.2	Landfill Mulcher
5.3	Remediation Units
5.4	External Combustion
5.4 5.5	
	External Combustion
5.5	External Combustion
5.5 5.6	External Combustion
5.5 5.6 5.7	External Combustion5-4Fuel Dispensing5-5Fuel Loading Racks5-7Storage Tanks5-8

6.0	Operational Plan	6-1
7.0	Site Diagram	7-1
8.0	Alternative Operating Scenarios	8-1
9.0	Insignificant Activities	9-1
10.0	Dispersion Modeling	10-1
11.0	Certification of Compliance Status	11-1
12.0	Statement of Continued Compliance	12-1
13.0	Enhanced Monitoring and Compliance Certification	13-1

Attachments

Attachment A – AEHD AQD Operating Permit Renewal Application Forms

- Attachment B Process Flow Diagrams
- Attachment C Emission Calculations
- Attachment D Contents of Permit Application
- Attachment E Site Map
- Attachment F Insignificant Sources
- Attachment G Air Dispersion Modeling

List of Tables

Table 4-1. Summary of Kirtland AFB Permitted Source Emission Limits (tons/year)......4-1

List of Acronyms and Abbreviations

377 ABW	377th Air Base Wing			
377 MSG/CEIEC	377th Mission Support Group/Environmental Compliance			
58 SOW	58 th Special Operations Wing			
AAFES	Army and Air Force Exchange Service			
AEHD	Albuquerque Environmental Health Department			
AFB	Air Force Base			
AFRL	Air Force Research Laboratory			
AQD	Air Quality Division			
AST	above ground storage tank			
AVGAS	aviation gasoline			
BTU	British thermal unit(s)			
CATOX	catalytic oxidation (oxidative catalyst)			
CFR	Code of Federal Regulations			
CI	compression ignition			
СО	carbon monoxide			
DOE	Department of Energy			
EPA	U.S. Environmental Protection Agency			
GAC	granulated activated carbon			

List of Acronyms and Abbreviations (Cont.)

НАР	hazardous air pollutant	
HVLP	high volume low pressure	
hp	horsepower	
hr	hour(s)	
ID	identification	
LRS	Logistics Readiness Squadron	
NESHAP	National Emissions Standard for Hazardous Air Pollutants	
NMAC	New Mexico Administrative Code	
NO _x	nitrogen oxides	
NSPS	New Source Performance Standards	
ppmv	parts per million by volume	
PTE	potential total emissions	
PM _{2.5}	particulate matter less than or equal to 2.5 micrometers	
PM ₁₀	particulate matter less than or equal to 10 micrometers	
R&D	Research and Development	
scfm	standard cubic feet per minute	
SIC	Standard Industrial Classification	
SNL	Sandia National Laboratory	
SO ₂	Sulfur dioxide	

List of Acronyms and Abbreviations (Cont.)

SSM	start-up/shut-down scheduled maintenance
SVE	soil vapor extraction
THC	total hydrocarbons
tpy	tons per year
VOC	volatile organic compound

This page intentionally left blank

1.0 General Information

Kirtland Air Force Base (AFB) is applying to renew Title V Operating Permit 527-RN1, which is being submitted to the Albuquerque Environmental Health Department (AEHD) Air Quality Division (AQD). The term of Permit 527-RN1 is five (5) years, and will expire on January 22, 2023, which is five years from the date of issuance, pursuant to 20.11.42.12C.(2) New Mexico Administrative Code (NMAC). This renewal application is due twelve (12) months prior to the date of permit expiration, pursuant to 20.11.42.12A(2)(a)(ii) NMAC. However, on January 21, 2022 AEHD granted Kirtland AFB an extension to submit the application until they had resolved modeling questions. This permit renewal seeks to authorize the addition of the following:

- Emergency Generator Unit 13 (19181) included in Construction Permit 1786-M5
- Emergency Generator Unit 14 (19182) included in Construction Permit 1786-M5
- Non-Emergency Generator Unit 1 (19183) included in Construction Permit 3366
- Soil Vapor Extraction System Unit 1 (12010) included in Construction Permit 3331

The following equipment will be removed from the permit:

- Emergency Generator (19094) was previously included in Construction Permit 3032-M1-AR. This unit is under the control of the New Mexico Air National Guard and is not under the common control of Kirtland AFB. An Air Quality Notification has been submitted for this unit to meet the requirements of 20.11.39 NMAC.
- Emergency Generator (19180) was previously included in Construction Permit 3323. This unit was never installed and Construction Permit 3323 will be closed.

1.1 General Facility Description

Kirtland AFB is located in Bernalillo County, New Mexico, adjacent to the City of Albuquerque. The 377th Air Base Wing (377 ABW) is the host unit at Kirtland AFB. The mission of the 377 ABW is to execute nuclear, readiness, and support operations for American air power. The primary activity at Kirtland AFB is classified under the Standard Industrial Classification (SIC) code 97, National Security. As the host unit, the 377 ABW maintains a number of utilities, maintenance shops and facility support services. Kirtland AFB has grouped air emission sources based on the guidance provided in the U.S. Environmental Protection Agency (EPA) Memorandum, *Major Source Determinations for Military Installations under the Air Toxics, New Source Review, and Title V Operating Permit Programs of the Clean Air Act (CAA)*, August 2, 1996 and as approved by the AEHD AQD. As stated in the EPA guidance memo, "When different military services control separate groups of pollutant–emitting activities at a single military installation, the Agency believes it is appropriate to consider these activities not to be under common control when making major source determinations. That is, all pollutant-emitting activities at a military installation under the control of the Army could be considered under separate control from those activities "owned or operated" by the Navy, the Air Force, or the Marine Corps." Activities at Kirtland AFB that are under common control and are related to the primary activity of the installation are included in the Title V Operating Permit. Support activities that are related to the primary activity of the installation are classified under SIC 49 Utilities, SIC 92 Fire Protection/Police, and SIC 45 Transportation by Air, which includes activities performed by the 58th Special Operations Wing (58 SOW).

Activities at Kirtland AFB that were determined to be under separate control are not included in Sections 2.0 through 5.0 of this Title V Operating Permit Renewal Application. Personnelrelated activities are not considered to be support facilities to the primary military activities of Kirtland AFB. Any air emission sources that are not under common control and are not related to the primary activity of Kirtland AFB are to be addressed under separate permitting actions. Entities considered to be under separate control are owned or operated by the following organizations:

- New Mexico Air National Guard
- Defense Threat Reduction Agency
- United States Army

Kirtland AFB hosts several types of activities for the convenience of military personnel, their dependents, and Department of Defense (DOD) civilian employees working on Kirtland AFB. These activities do not support the primary activity of Kirtland AFB and are not included in this permit application. These activities include:

- Army and Air Force Exchange Service (AAFES) Gasoline Stations
- 377 Force Support Squadron (Auto Hobby Shop, Arts & Crafts Center, Aero Club, Golf Course)
- Commissary

Miscellaneous paint and chemical usage activities included in this Title V Operating Permit Renewal Application include all miscellaneous paint and chemical usage on Kirtland AFB, regardless if usage is from common or non-common controlled facilities. This is a conservative methodology that overestimates emissions as Kirtland AFB does not include non-common controlled entities in the Title V Permit as stated above. This calculation methodology is employed because it is not time effective to analyze the chemical usage for specific entities, and the chemical usage from the non-common controlled sources will be minor.

The U.S. Department of Energy (DOE) and its primary facility, Sandia National Laboratories (SNL), is one of the tenants of Kirtland AFB. Some of DOE's functions are on property or in buildings leased from Kirtland AFB, while others are on land owned by DOE. This Kirtland AFB Title V Operating Permit Renewal Application will not include DOE; DOE/SNL operates under separate permitting actions that will include operations under the DOE's Kirtland Area Office and the Albuquerque Area Office. Likewise, the Lovelace Respiratory Research Institute is a tenant of DOE at Kirtland AFB and is not included in this Title V Operating Permit Renewal Application.

1.2 Permit Application Content

This application contains only 377 ABW common controlled sources that have been issued or have pending Construction Permits under 20.11.41 NMAC or Source Registrations under 20.11.40 NMAC. Title V Sources are listed in the AEHD AQD Operating Permit Renewal Application Forms located in Attachment A. Process flow diagrams and emission calculations are included in Attachment B and C respectively. Source Registrations and Construction Permit numbers along with the corresponding process equipment numbers from the permit and Kirtland AFB Unit Identification (ID) numbers are included in Attachment D, Table D-1. Attachment D, Table D-2, includes a summary of 20.11.42 NMAC permit application contents and Table D-3 includes a summary of applicable requirements by source category. Attachment E contains a site map of Kirtland AFB and each emission unit identified by Kirtland AFB Unit ID. Attachment F contains a listing of all insignificant activities located at Kirtland AFB. Attachment G contains the final air dispersion modeling report and modeling files for sources required to be modeled under the Title V Permit.

Attachment A – AEHD AQD Operating Permit Renewal Application Forms

Attachment B – Process Flow Diagrams

Attachment C – Emission Calculations

Attachment D – Contents of Permit Application

Attachment E – Site Map

Attachment F – Insignificant Sources

Attachment G- Air Dispersion Modeling

1.3 Permit Shield Request

Kirtland AFB requests that the contents of this permit renewal application, including applicable requirements, listed exemptions, and the dispersion modeling analysis, be included in the permit shield of the final permit issued by the AEHD AQD. Pursuant to 20.11.42.12.C(9) NMAC, compliance with the conditions of the final permit shall be deemed to be in compliance with any applicable requirements existing as of the date of permit issuance and identified by the AEHD AQD in the permit.

2.0 Proposed Exemptions

2.1 Exempt Activities

Kirtland AFB is requesting that the following sources and activities to be trivial and therefore exempt from the Title V permitting requirements. In the Content of Application section, 20.11.42.12A.(4)(h) NMAC states "provide an explanation of any proposed exemptions from otherwise applicable requirements." This determination is based on sources and activities considered by the AEHD AQD to be exempt from new source review and inclusion in facilitywide potential total emissions (PTE) estimates, pursuant to 20.11.41.2F NMAC:

- 1. Activities which occur strictly for maintenance of grounds or buildings, including: lawn care, pest control, grinding, cutting, welding, painting, woodworking, sweeping, general repairs, janitorial activities, and building roofing operations.
- 2. Activities for maintenance of equipment or pollution control equipment, either inside or outside of a building, including cutting, welding, and grinding, but excluding painting.
- 3. Exhaust emissions from forklifts, courier vehicles, front end loaders, graders, carts, and maintenance trucks.
- Use of firefighting equipment and firefighting training provided the emissions are not subject to any requirement of a New Source Performance Standard (NSPS) or a National Emissions Standard for Hazardous Air Pollutants (NESHAP).
- Government military activities such as field exercises, explosions, weapons testing and demolition to the extent that such activities do not result in visible emissions entering publicly accessible areas.
- 6. Use of portable support equipment such as power generation equipment, compressors, heaters, air conditioning and lighting equipment used for activities that include, but are not limited to maintenance and repair if the equipment is used fewer than 12 consecutive months at the same location and the equipment does not directly support an otherwise regulated portable stationary source (such as a screening plant, sand and gravel processing equipment, hot mix asphalt plant, concrete plant or soil vapor extraction system).

- 7. Gases used to calibrate plant instrumentation, including continuous emission monitoring systems.
- 8. An applicant for a permit is not required to obtain a permit for the following new or modified sources and activities at a facility, but is required to report the following on permit application forms available from the AEHD AQD: Fuel burning equipment that is used solely for heating buildings for personal comfort or for producing hot water for personal use and that:
 - uses gaseous fuel and has a design rate of five million British thermal units (BTU) per hour or less; or
 - Uses distillate oil, but not including waste oil, and has a design rate of one million BTU per hour or less.

A list of the fuel burning equipment meeting these criteria is provided in the Insignificant Sources List – Attachment F.

In addition, Kirtland AFB considers the following operations and activities to be trivial and exempt as acknowledged by the AEHD AQD in the document "Final Statement of Basis KAFB #527-RN1."

- Material storage operations that may include storage of laboratory chemicals, fuel storage tanks for exempt space heating equipment, inorganic storage tanks less than accidental release risk program levels, fuel storage day tanks, paint storage, and battery storage room exhausts. Includes pumping and line-loss from tank lines, flanges, and valves for fuel delivery systems. This also applies to tank storage, dispensing, and loading jet fuel and diesel fuel, because the low vapor pressures of these fuels (less than or equal to 10 millimeters of mercury) cause very small emissions. Material storage also includes storage tanks limited to storage of surfactant, waste petroleum oil lubricants, hydraulic fluid, and cooking oils.
- 2. Personal care activities, including but not limited to, lavatory activities, pumping stations, sewage disposal, laundering, and use of personal care items.
- 3. Temporary operations, including portable generators, that are conducted for less than one year
- 4. Safety and security training.

- 5. Vehicle maintenance, including vehicle testing, maintenance, and repair.
- 6. Construction activities, including small electrical generators, air compressors, various fueled power tools, and mobile welding units. As long as there are not applicable requirements, construction activities are considered exempt from the Title V Operating Permit program; as such, no emissions or specific application information will be provided. If there are applicable requirements for specific equipment, the individual construction contractors will be required to meet the applicable air quality requirements.
- 7. Emissions, excluding asbestos, which result from demolition activities. Demolition sources include, but are not limited to, renovation, destruction, demolition, cleanup, and removal of buildings and support structures. Demolition activities also include decontamination and decommissioning operations. Typical activities are temporary, lasting either days or months. The Fugitive Dust Control regulation, 20.11.20 NMAC, including the proper asbestos notifications and worker protection requirements, are strictly followed by Kirtland AFB and its contractors when conducting demolition activities.

These sources, operations, and activities will not be addressed further in the application.

This page intentionally left blank

3.0 Fee Assessment

The annual Operating Permit emission fees will be invoiced by the AEHD AQD using the pollutants emitted, emission rates, and applicable requirements for emission sources presented in the application forms located in Attachment A. No additional information is required to be provided to establish a basis for fees.

This page intentionally left blank

4.0 Emissions Information

4.1 **Process Flow Sheets**

Process Flow sheets for Kirtland AFB's emission sources can be found in Attachment B – Process Flow Diagrams.

4.2 Calculations

Emission calculation spreadsheets for emission sources in this application can be found in Attachment C – Emission Calculations.

4.3 Summary of Title V Source Emission Limits

Kirtland AFB is a major source for criteria pollutants based on the potential to emit of several criteria air pollutants exceeding 100 tons per year (tpy). Kirtland AFB is a minor source of hazardous air pollutants (HAP), because the potential emissions of any one HAP do not exceed 10 tpy and all combined HAP do not exceed 25 tpy. Kirtland AFB's potential emissions of criteria pollutants and HAPs are reduced through federally enforceable limits contained in the Construction or Authority-to Construct Permit issued to each source. The total Title V Permit emission limits are based on all primary and support sources at Kirtland AFB operating at the maximum capacity contained in their respective Construction Permit or Source Registration Application. A summary of emission limits for the Kirtland AFB Title V sources is included in Table 4-1 below.

 Table 4-1. Summary of Kirtland AFB Title V Source Emission Limits¹ (tons/year)

Carbon Monoxide (CO)	Oxides of Nitrogen (NO _x)	Volatile Organic Compounds (VOC)	Sulfur Dioxide (SO ₂)	Total Suspended Particulate Matter (PM)	Particulate Matter (PM ₁₀)	Particulate Matter (PM _{2.5})	Hazardous Air Pollutants (HAP)
37.1	78.5	144.4	3.5	5.5	5.5	5.5	3.5

¹The total Title V Permit emission limits are based on all primary and support sources at Kirtland AFB operating at the maximum capacity contained in their respective Construction Permit, or Source Registration Application.

Information required for each permitted emission unit is included in the AEHD AQD Operating Permit Renewal Application Forms found in Attachment A. Process flow diagrams and emission calculations for each permitted unit are presented in Attachment B and Attachment C, respectively. The contents of this renewal application are outlined in Attachment D. Attachment E contains a detailed site map with the exact location of each source. A brief description of the emission sources is included in Section 5.0.

5.0 Work Practice Standards or Limitations

5.1 Internal Combustion Units

Internal combustion units contained in this permit application are used to power generators, provide primary power for research and development (R&D) activities and emergency water pumps at Kirtland AFB.

Specific information for each emission unit is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. A simplified process flow diagram for an internal combustion engine is contained in Attachment B, and emission calculations for each internal combustion unit are provided in Attachment C. Attachment E contains a detailed site map with the exact location of each source.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

Design Capacity/Maximum Operating Schedule. The internal combustion sources vary in design capacity from 25 horsepower (hp) to 1490 hp. Emergency generators may be operated any time when grid power is interrupted. There are also engines used to pump water to various locations at Kirtland AFB. To maintain maximum flexibility, it is assumed that internal combustion sources can operate any time, 24 hours per day, 7 days per week, 52 weeks per year; however, emergency generators are operated only a few hours at a time throughout the year.

Emissions Control Equipment and Monitoring Equipment

The internal combustion sources at Kirtland AFB are not equipped with emissions control or monitoring equipment. No applicable requirements mandate the use of such equipment.

5.2 Landfill Mulcher

The landfill mulcher consists of a 425 hp diesel engine (Unit ID 18001) which powers a mechanical mulcher (Unit ID 18002) as is included in construction permit #3048-2TR. The combined unit is on a wheeled trailer. Its primary storage and operating location is the Construction and Demolition Debris Landfill (C&D landfill), also referred to as LF-268. The unit has the potential to be moved and used on other areas of Kirtland AFB. Wood materials

processed in the mulcher may consist of any combination of tree trunks, limbs, bushes, segregated lumber, or bush or tree clippings. Mulching makes these items more amenable to biodegradation and/or for use as compost.

Specific information for each emission unit is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. A simplified process flow diagram for the landfill mulcher is contained in Attachment B, and emission calculations are provided in Attachment C. Attachment E contains a detailed site map with the exact location of the landfill mulcher.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

<u>Design Capacity/Maximum Operating Schedule</u>. Maximum hourly usage was assumed to be one 10.8 cubic yard hopper per hour, and maximum annual usage was conservatively estimated to be 500 hours per year. Historical operating data indicates that the mulcher operates far less frequently.

Emission Control Equipment and Monitoring Equipment

Kirtland AFB is subject to the requirements of the NESHAP 40 Code of Federal Regulations (CFR) 63 Subpart ZZZZ Reciprocating Internal Combustion Engines (RICE) for the landfill mulcher. The landfill mulcher engine is categorized as a non-emergency, compression ignition (CI) between 300 and 500 hp and is subject to CO emission control requirements (40 CFR 63.6603 and Table 2d). Kirtland has installed a catalyst on the landfill mulcher. The catalyst is capable of providing a 70% reduction in CO emissions. In addition to the catalyst, a temperature and pressure monitoring system is installed to ensure that the catalyst maintains optimal operating conditions to reduce CO emissions.

5.3 Remediation Units

There are two soil vapor extraction (SVE) systems located at Kirtland AFB that are part of an ongoing environmental restoration projects at Kirtland AFB. The SVE systems, Unit IDs 12009 and 12010, are contained in source registration #3329 and construction permit #3331, respectively. The SVE units are designed to remediate vadose zone contamination.

The SVE systems include SVE wells, aboveground piping manifolds that transport the vapors to a blower skid, and either granulated activated carbon (GAC) or catalytic oxidation (CATOX) units to mitigate/destroy the hydrocarbon vapors in the extracted well gas.

SVE unit 12009 is designed for 50 percent minimum removal of hydrocarbons. It includes an inlet system with a vapor/liquid separator, inlet air filter, a blower and two units placed in the exhaust before discharge to atmosphere. The vacuum blower pulls volatilized total hydrocarbons (THCs) through recovery wells located beneath the surface in vaults. Ambient air is then combined with the THC vapor before the separator removes entrained/condensed water from the mixed vapor stream. The air stream is then discharged at low pressure through the activated carbon filters at 365 standard cubic feet per minute (scfm) for treatment.

The CATOX system (unit 12010) at Site 58 PL-567 will be used to remediate spill contamination and extract gasoline vapors from the vadose zone at Site 58; however, it has not begun operation as of the due date of this application. The SVE will be operated continuously and has a destruction efficiency of 99% using a thermal oxidizer that operates at 467,000 BTU/hour (hr), with a constant air flow of 250 scfm. The unit uses extracted fuel vapors for its operation, relying on propane as a secondary fuel source when extracted vapors are insufficient. The THC-laden air is drawn into the CATOX fan and is discharged into the system's heat exchanger. The air passes through the tube side of the heat exchanger and into the burner, where the contaminated air is raised to the catalyst operating temperature of 600 to 1200 degrees Fahrenheit (°F). When the THC-laden air passes through the catalyst, an exothermic reaction takes place, converting the THC in the air stream to carbon dioxide and water vapor. The air stream is then exhausted out the adjoined 13-foot steel stack. With the high hydrocarbon content of the SVE well gas and the heat recovery exchanger, the CATOX will require very little propane until THC concentrations in the SVE well gas drop below 3500 parts per million by volume (ppmv). Only VOC, CO and NOx are emitted by its operation. While CO and NOx could be considered negligible and the HAP emissions almost zero, estimates are still incorporated into Kirtland AFB's emissions calculations and are included in Attachment A.

Specific information for the SVE systems is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. Simplified process flow diagrams applicable to the SVE systems are contained in Attachment B and emission calculations for the SVE systems are provided in Attachment C. Attachment E contains a detailed site map with the exact location of each source.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

<u>Design Capacity/Maximum Operating Schedule</u>. The SVE systems treat vapor phase extracted fuel primarily. The SVE system can be operated 24 hours per day, 7 days per week, 52 weeks per year other than for scheduled maintenance down time. This operating schedule allows for maximum operations to facilitate the maximum removal of soil contamination.

Emissions Control Equipment and Monitoring Equipment

The SVE systems are not equipped with emissions monitoring equipment. No applicable requirements mandate the use of this equipment.

5.4 External Combustion

Kirtland AFB uses external combustion systems (boilers) to provide comfort heat and to produce hot water for individual buildings throughout Kirtland AFB. These systems, permitted and insignificant sources, vary in heat input capacity from about 0.21 million Btu/hour to 6.25 million Btu/hour. Kirtland AFB's external combustion systems are all fueled by pipeline natural gas. Emission unit IDs 14014 and 14166 through 14169 are the five non-exempt permitted external combustion boilers on Kirtland AFB that provide comfort heating.

Specific information for each emission unit is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. A simplified process flow diagram for an external combustion unit is contained in Attachment B, and emission calculations for each external combustion unit are provided in Attachment C. Attachment E contains a detailed site map with the exact location of each source.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

Emissions from external combustion occur continuously when the unit is being operated. The maximum operating schedule for most of Kirtland AFB's units is 24 hours per day, 7 days per week, 26 weeks per year, as these units are used only for building heating and are operated only during cold weather months. These external combustion units are turned on in the fall and turned

off in the spring. During the period in which the boilers are operating, they are switched on and off automatically by a load demand sensor (e.g., a thermostat). Kirtland AFB has chosen to base allowable emissions on continuous operation (8,760 hours/year) of all external combustion systems.

Emissions Control Equipment and Monitoring Equipment

The external combustion units at Kirtland AFB are not equipped with emissions control or monitoring equipment. There are no specific or general applicable requirements that mandate emissions control or monitoring for gas-fired external combustion units.

5.5 Fuel Dispensing

Fuel dispensing at Kirtland AFB consists of dispensing gasoline, E85, aviation gasoline (AVGAS), jet fuel, and diesel fuel into equipment and vehicles for use at Kirtland AFB. Because jet fuel and diesel fuel have vapor pressures below 10 mm Hg, dispensing of these fuels is defined as an insignificant activity by the AEHD AQD.

Government East Service Station

The dispensing (Unit ID 15001) operation at the Government East Service Station, located adjacent to Building 20359, is used to dispense gasoline to government vehicles. Operations involve transferring fuels from commercial and base-owned delivery trucks into two above ground storage tanks (ASTs), and transferring fuels from the ASTs into government vehicles via two fuel dispensers. Each gasoline AST has a capacity of 10,000 gallons and is equipped with a submersible pump to deliver fuel to the dispenser. Each dispenser has two nozzles, providing for a total of four dispensing nozzles.

The Government East Service Station also dispenses E85 fuel to government vehicles. E85 is an alcohol fuel blend that contains a mixture of 85% denatured fuel ethanol and 15% gasoline by volume. The E85 fuel dispensing (Unit ID 15011) operation is also located adjacent to Building 20359. Operations involve transferring fuels from the AST into vehicles via the dispenser. The dispenser has two nozzles.

Government West Service Station

The gasoline dispensing (Unit ID 15004) operation at the Government West Service Station, located adjacent to Building 471, is used to dispense gasoline to government vehicles. Operations involve dispensing fuels from the vaulted AST into vehicles. The dispenser has two nozzles.

898th Munitions Squadron

The gasoline fuel dispensing (Unit ID 15008) operation located adjacent to Building 27497 is used to dispense motor fuels to all-terrain vehicles (ATVs), off-roading vehicles (HUMVEEs, etc), and occasionally pick-up trucks. Operations involve transferring fuel from the vaulted AST into vehicles via the dispenser. The vaulted AST stores both unleaded gasoline and biodiesel. The gasoline is stored in one compartment of the vaulted AST and has a capacity of 1,000 gallons. The vaulted AST is equipped with a submersible pump to deliver fuel to the dispenser. The dispenser has one nozzle for gasoline.

Startup and shutdown emissions from all storage tank and fuel dispensing operations are not expected to be different from those during normal operations.

Specific information for each emission unit is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. A simplified process flow diagram for a fuel dispensing operation is contained in Attachment B, and emission calculations for each fuel dispensing unit are provided in Attachment C. Attachment E contains a detailed site map with the exact location of each source.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

Design Capacity/Maximum Operating Schedule. Gasoline and E85 dispensing operations occur whenever operations at Kirtland AFB are ongoing. To maintain maximum flexibility, it is assumed that fuel dispensing may occur any time, 24 hours per day, 7 days per week, 52 weeks per year. The design capacity of fuel dispensing operations is difficult to define. In general, each fuel dispensing nozzle can dispense approximately 10 gallons of gasoline per minute; however, the process capacity is limited by the requirement to move vehicles to and away from the dispenser and to prepare them for fueling.

Kirtland AFB's normal operating hours for fuel dispensing are approximately 6 a.m. to 5 p.m., 7 days per week. Exact hours cannot be specified because different organizations at Kirtland AFB operate on different schedules. Occasionally, project demands result in operations at other hours of the day or night and on weekends.

Kirtland AFB's dispensing operations at the Government East and West Service Stations have permitted throughput limits of 690,000 gallons per year for Unit ID 15001, 140,000 gallons per year for Unit ID 15004, and 510,000 gallons per year for Unit ID 15011. The dispensing operation at the 898th Munitions Squadron has a permitted throughput limit of 20,000 gallons per year for Unit ID 15008.

Emission Control Equipment and Monitoring Equipment

Emissions reduction resulting from the vapor balance system is not taken into account in the established permit emission limits. The remaining fuel dispensing operations at Kirtland AFB are not equipped with emissions control or monitoring equipment; no applicable requirements mandate the use of such equipment.

5.6 Fuel Loading Racks

Fuel loading rack operations consist of transferring liquid fuel from a fixed storage tank to a tanker truck for subsequent transport to other locations. Emissions occur as a result of fuel vapor displacement when the tanker truck is filled.

Bulk Fuels Facility

The gasoline loading (Unit ID 16001) operation at the Bulk Fuels Facility is located adjacent to Building 1041. Operations involve transferring unleaded gasoline from the AST into government-owned fuel trucks via submerged loading. Operations are limited to a throughput of 90,000 gallons per year and less than 20,000 gallons per day.

Specific information for the emission unit is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. A simplified process flow diagram for a fuel loading operation is contained in Attachment B, and emission calculations for the fuel loading unit are provided in Attachment C. Attachment E contains a detailed site map with the exact location of each source.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

<u>Design Capacity/Maximum Operating Schedule</u>. Fuel loading operations occur on an as-needed basis. To maintain maximum flexibility, it is assumed that loading operations could occur any time, 24 hours per day, 7 days per week, 52 weeks per year.

Kirtland AFB's normal operating hours are approximately 6 a.m. to 5 p.m., 5 days per week. Exact hours cannot be specified because different organizations at Kirtland AFB operate on different schedules. Occasionally, project demands result in operations at other hours of the day or night and on weekends.

Kirtland AFB has established throughput limits of 90,000 gallons per year and less than 20,000 gallons per day and with a 300 gallons per minute unloading rate.

Emission Control Equipment and Monitoring Equipment

The gasoline loading rack operations at Kirtland AFB are not equipped with emissions control or monitoring equipment. No applicable requirements dictate the use of such equipment.

5.7 Storage Tanks

Fuels are routinely stored in steel or fiberglass tanks at Kirtland AFB that can be either an AST or installed in a below-grade vault. An AST can have fixed dimensions (fixed roof tanks), or can have a roof that floats on or above the liquid surface (internal or external floating roof tanks). Emissions from storage tanks occur due to vapor displacement as liquid is pumped into the tank and when diurnal temperature changes cause the tanks to "breathe."

Bulk Fuels Facility

The gasoline storage (Unit ID 22005) operation at the Bulk Fuels Facility is located adjacent to Building 1041. Operations involve transferring gasoline from commercial delivery trucks into the AST. The AST associated with this loading operation has a capacity of 10,000 gallons and

stores unleaded gasoline. Operations are limited to a throughput of 90,000 gallons per year and less than 20,000 gallons per day.

Government East Service Station

The gasoline storage (Unit IDs 22003/22004) operation at the Government East Service Station, located adjacent to Building 20359, is used to dispense gasoline to government vehicles. Operations involve transferring fuels from commercial and base-owned delivery trucks into two ASTs. Each gasoline AST has a capacity of 10,000 gallons and is equipped with a submersible pump to deliver fuel to the dispenser.

The Government East Service Station also stores and dispenses E85 fuel to government vehicles. E85 is an alcohol fuel blend that contains a mixture of 85% denatured fuel ethanol and 15% gasoline by volume. The E85 fuel storage (Unit ID 22015) operation is also located adjacent to Building 20359. Operations involve transferring fuels from commercial delivery trucks into the AST, and transferring fuels from the AST into vehicles via the dispenser. The E85 AST has a capacity of 10,000 gallons and is equipped with a submersible pump to deliver fuel to the dispenser.

Government West Service Station

The gasoline storage (Unit ID 25012) operation at the Government West Service Station, located adjacent to Building 471, is used to dispense gasoline to government vehicles. Operations involve transferring fuels from commercial and base-owned delivery trucks into an AST installed in a below-grade vault, and dispensing fuels from the vaulted AST into vehicles. The gasoline tank has a capacity of 3,000 gallons and is equipped with a submersible pump to deliver fuel to the dispenser.

898th Munitions Squadron

The gasoline storage (Unit ID 25017) operation located adjacent to Building 27497 is used to dispense motor fuels to off-roading vehicles (HUMVEEs, etc), and occasionally pick-up trucks. Operations involve transferring fuel from delivery trucks into the vaulted AST, and transferring fuel from the vaulted AST into vehicles via the dispenser. The vaulted AST stores both unleaded gasoline and biodiesel. The gasoline is stored in one compartment of the vaulted AST and has a

capacity of 1,000 gallons. The vaulted AST is equipped with a submersible pump to deliver fuel to the dispenser.

Specific information for each emission unit is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. A simplified process flow diagram for a storage tank is contained in Attachment B, and emission calculations for each storage tank are provided in Attachment C. Attachment E contains a detailed site map with the exact location of each source.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

Design Capacity/Maximum Operating Schedule. There are two components of design capacity that impact emissions from fuel storage tanks; the storage capacity of the tank and the fuel throughput. The storage capacity of each tank sets the upper limit on the vapor space volume, which is a major factor in the standing storage loss portion of storage tank emissions. The fuel throughput is the primary determining factor in the working loss portion of storage tank emissions. Standing storage losses occur as the ambient temperature changes. Working losses occur when fuel is added to the tank; to maintain maximum operating flexibility, it is assumed that storage tanks can be filled any time, 24 hours per day, 365 days per year.

Filling the gasoline storage tanks typically occurs only during Kirtland AFB's normal operating hours, approximately 6 a.m. to 5 p.m. Tanks themselves are in operation 24 hours a day, 7 days per week, 365 days per year.

Emission Control Equipment and Monitoring Equipment

Commercial trucks delivering fuel to Kirtland AFB gasoline and E85 tanks employ vapor balance, and afterwards the vapors that remain in the trucks are contained and not released onsite. Although emissions are reduced because of the vapor balance used, in order to be conservative, all on-site loading, dispensing, and tank filling emissions were estimated in this application assuming there were no vapor balance or controls.

5.8 Engine Test Cell

Test cell operations are located southeast of Building 701 on the test cell pad where performance tests are conducted on uninstalled aircraft engines.

The test cell operations are located at the 58 SOW test facility located southeast of Building 701 on Kirtland AFB. The engine test stands are located on the southeast section of the 58 SOW test facility. The test cell operations currently test uninstalled T400 (Unit ID 20002) helicopter and T700 (Unit ID 20004) helicopter engines. The engines are tested to isolate mechanical problems and to ensure that the engines are running properly once maintenance has been performed. The test cell operations consist of a test stand, trailer and cab. Jet fuel is used in all of the tests.

The exhaust gases consist of combustion products from the jet fuel burned in engines, including CO, NOx, PM, PM₁₀, PM_{2.5}, SOx, VOC, and HAP. A simplified process flow diagram for test cell operations is presented in Attachment B. The process inputs are fuel and air and the process outputs are combustion products and mechanical work (engine thrust).

Because tests are conducted as part of maintenance operations to ensure that the engines are operating as close to design specifications as possible, no testing is intentionally done at poor operating conditions. No excess, upset, or malfunction emissions are expected.

Specific information for each emission unit is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. A simplified process flow diagram for an engine test cell is contained in Attachment B, and emission calculations for each engine test cell are provided in Attachment C. Attachment E contains a detailed site map with the exact location of each source.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

Design Capacity/Maximum Operating Schedule. Equipment located at the facility may operate 24 hours per day, 7 days per week, 52 weeks/year. However, pursuant to Construction Permit #0484-M3, Unit ID 20004 #T700 shall not exceed 235 annual hours of operation based on a 12-month rolling total and Unit ID 20002 #T400 shall not exceed 350 annual hours of operation based on a 12-month rolling total.

Emission Control Equipment and Monitoring Equipment

The engine test cell operations at Kirtland AFB are not equipped with emissions control or monitoring equipment. No applicable requirements dictate the use of such equipment.

5.9 Miscellaneous Paint and Chemical Usage

Miscellaneous paint and chemicals include products such as solvents, adhesives, epoxies, resins, paints, and sealants, which are used for a wide variety of operational and maintenance purposes and are used at locations throughout Kirtland AFB.

Pollutants emitted from the use of paints and miscellaneous chemicals include VOCs, PM, PM₁₀, PM_{2.5}, and volatile and particulate HAPs. The process inputs are chemicals and surfaces and the process outputs are HAPs, VOCs, and prepared surfaces.

Miscellaneous paint and chemical usage is conducted as part of maintenance and operations on an as needed basis. There is no (or piece of) automated equipment that would have the potential to run without an operator, therefore, no excess, upset, or malfunction emissions are expected.

Specific information for miscellaneous paint and chemical usage is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. A simplified process flow diagram is contained in Attachment B and emission calculations for miscellaneous paint and chemical usage are provided in Attachment C. There is no specific location information for this process since it can occur throughout the entire base, and therefore is not included in Attachment E.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

<u>Design Capacity/Maximum Operating Schedule.</u> Operations and maintenance conducted at the facility may occur 24 hours per day, 7 days per week, 52 weeks/year.

Emission Control Equipment and Monitoring Equipment

The miscellaneous paint and chemical usage operations at Kirtland AFB are not equipped with emissions control or monitoring equipment. No applicable requirements dictate the use of such equipment.

5.10 Surface Coating

Surface coating operations involve the application of protective coatings (e.g., primers, sealers, stains, topcoats) to various types of surfaces to improve their durability and/or appearance. Surface coatings can be applied by brushing, rolling, or spraying the coating on to the surface, or by immersing the surface in the coating. Spray application of coatings is the most common method used in industrial settings; this can involve spraying from an aerosol can, use of a conventional air atomized spray rig, or use of more advanced spray equipment (e.g., high volume low pressure (HVLP), airless, or air-assisted airless) designed to reduce the amount of paint required to coat a surface by reducing the amount of overspray (i.e., coating material that misses or bounces off the surface).

Coating operations are conducted in a paint booth. Paint booths provide a good environment for painting by isolating the activity from wind, dust, and other external effects. Paint booths are typically equipped with filters for particulate matter control. Emissions from surface coating include the VOCs and HAPs in the solvents that are part of the coatings (and the solvents used for thinning and for cleanup) and PM emissions from overspray.

58 Special Operations Wing Training Development Paint Booth at Building 482

The 58 SOW Training Development Facility consists of one enclosed building that contains a small paint booth (Unit ID 21004), a mechanic shop area, classroom space, and an aircraft hangar. The primary function of the paint booth is to paint equipment and aircraft parts used in aircrew training mockups and facilities. Touch-up and surface coating refurbishment operations for aircraft parts such as panels will be accomplished in the paint booth.

58 Special Operations Wing Corrosion Control Facility

The 58 SOW Corrosion Control Facility (Unit ID 21015) consists of a main hangar and an adjacent shop area. The primary function of the main hangar is as an aircraft paint bay. Spot stripping, touch-up and surface coating repair operations for large aircraft and smaller, removable aircraft components are accomplished in the aircraft paint bay.

Specific information for surface coating activities is contained in the AEHD AQD Operating Permit Renewal Application Forms in Attachment A. A simplified process flow diagram is contained in Attachment B and emission calculations for surface coating are provided in Attachment C. Attachment E contains a detailed site map with the exact location of each source.

Maximum and Standard Operating Procedures (Work Practice Standards or Limitations)

The 58 SOW Paint Booth (Unit ID 21004) generally operates during an 8.5 hour per day, 5 day per week, 52 week per year schedule. However, to maintain maximum operating flexibility, it is assumed that these operations could occur any time during a 24 hour per day, 7 day per week, 52 week per year time period. The rated process rate for 58 SOW Paint Booth is 3.0 gal/hr for each spray gun; however, since there is only one gun port in the booth, only one of the two permitted spray guns are used at a time.

The 58 SOW Corrosion Control Facility (Unit ID 21015) generally operates for five days per week, 52 weeks per year. However, to maintain maximum operating flexibility, it is assumed that these operations could occur 7 days per week, 52 weeks per year. The rated process rate for 58 SOW Corrosion Control Facility is 30 lb/hr for each HLVP spray gun, however only two HVLP spray guns are allowed to be used at any one time.

Emission Control Equipment and Monitoring Equipment

Emissions from surface coating operations consist of VOCs and HAP associated with the solvents in paints, thinners, and cleaning solvents. Particulate matter is emitted as a result of paint overspray and the PM may also contain HAP. Emission control equipment consists of particulate filters located in the paint booth. Overspray from painting activities passes through particulate filters and is then exhausted through the paint booth stack(s).

6.0 Operational Plan

Mitigation of Startup, Shutdown, and Emergency Emissions (Operational Plan)

Kirtland AFB assumes that startup, shutdown, and scheduled maintenance (SSM) emissions from the mission support permitted equipment related to training exercises, aircraft refueling and maintenance, engine testing, fuel storage and distribution, and corrosion control/surface coating activities are equal to steady state emissions; therefore it is assumed that the established emission limits contained in Kirtland AFB's Operating Permit for these sources are sufficient to accommodate SSM emissions and an exceedance is not expected. Specific operational conditions related to the potential for SSM emissions from each source category are included below.

Internal Combustion Units

Internal combustion engines typically have increased particulate emissions at startup, until the engine has warmed up. This is normal and no specific mitigation measures will be employed. Shutdown emissions are not anticipated from this type of equipment. Routine emissions from the emergency engines occur during monthly maintenance operations. Emergency engines are only operated for maintenance purposes and during an emergency. Monthly maintenance ensures that the emissions will be normal when an engine is operated in response to an emergency.

Remediation Units

Routine preventative maintenance for the SVE systems will be conducted to assure proper operation and optimize vadose zone treatment. SVE system maintenance activities are documented in quarterly and semi-annual performance and summary reports prepared on behalf of the Kirtland AFB Environmental Restoration Program.

Surface Coating

Emissions from the paint booths at startup and shutdown are not expected to differ from those during normal operations. If a HVLP or an electrostatic spray gun involved in a coating process

malfunctions, the desired finish cannot be obtained, and the equipment operator will immediately halt the operation and correct the malfunction. Since all VOC and HAP emissions contained in the coating are assumed to be emitted, there is no malfunction that could increase these emissions. By the nature of the coating application equipment and material, there is no increase in emissions during startup or shutdown.

Emissions from paint booth particulate control equipment are not higher during startup or shutdown than emissions during routine operation. PM emissions from paint booths could be increased by a malfunction of the control device (e.g., a tear in the filter). If the particulate control equipment malfunctions during operation, the operators are trained to discontinue operations until the malfunction has been corrected.

External Combustion

External combustion systems operate only when ambient outdoor temperature fluctuations require the use of the heaters to maintain a consistent indoor temperature. The systems will typically be operated from the fall until they are shut down in the spring, routine (heat demand) startup and shutdown emissions are not expected to differ substantially from steady state emissions. Routine and preventive maintenance are typically performed during the warm months.

Fuel Storage

Startup and shutdown emissions for fuel storage and dispensing are not expected to differ from those during normal operations. The only emergency condition that might result in excess emissions would be a fuel spill or equipment leak. Kirtland AFB personnel routinely check for spills and leaks and correct such situations immediately upon discovery.

Miscellaneous Paint and Chemical Usage

Since there is no specific equipment associated with miscellaneous chemical use, there are no startup, shutdown, or emergency emissions to be addressed.

7.0 Site Diagram

A scaled map of Kirtland AFB illustrating the locations of all permitted equipment, all buildings, and the base fence line can be found in Attachment E – Maps with Emission Unit List. Each emission unit is labeled with the Kirtland AFB Unit ID. Refer to the emission unit list in Attachment E to identify the source description, Kirtland AFB Unit ID, and associated permit number.

This page intentionally left blank

8.0 Alternative Operating Scenarios

Kirtland AFB is not proposing any alternative operating scenarios for the internal combustion, remediation, external combustion, fuel dispensing, fuel loading, fuel storage, engine test cell, miscellaneous paint and chemical usage, or surface coating sources. All operations will conform to the descriptions provided in this section of the Operating Permit Renewal application and each Construction Permit or Source Registration.

This page intentionally left blank

9.0 Insignificant Activities

A list of insignificant activities is required in this application pursuant to 20.11.42.12A(4)(f) NMAC. Insignificant activities include those activities that have the potential to emit less than one ton per year of any regulated criteria pollutant. Any activity for which applicable requirements apply is not insignificant, regardless of whether the activity meets the definition of insignificant as stated. A listing of the insignificant sources is contained in Attachment F-Insignificant Sources. This page intentionally left blank

10.0 Dispersion Modeling

Air Dispersion Modeling is provided in Attachment G for the sources included in this Title V Operating Permit Renewal Application. The sources that were modeled include:

- Unit ID 12010 Soil Vapor Extraction System
- Unit ID 18001 Landfill Mulcher Engine
- Unit ID 19159 Non-Emergency Generator Engine
- Unit ID 19183 AFOTEC Generator
- Unit ID 20004 T700 Kerosene-fired Helicopter Engine
- Unit ID 20002 T400 Kerosene-fired Helicopter Engine
- Unit ID 21004 58 SOW Paint Booth
- Unit ID 21015 58 SOW Corrosion Control Facility

Modeling for the external combustion comfort heat boilers was waived by the AEHD AQD in a 30 August 2012 email from Mr. Jeff Stonesifer, AEHD AQD Meteorologist. Mr. Stonesifer stated: "A calculation of the emissions from the five natural gas boilers using AP-42 factors reveals low emissions from these boilers. Even if the emissions were coming from one location it still wouldn't be enough to trigger a permitting action. In short, Kirtland AFB does not need to model the following five boilers: Unit ID 14166 - 5,250,000 BTU/hr natural gas, Unit ID 14167 - 5,250,000 BTU/hr natural gas, Unit ID 14014 - 6,250,000 BTU/hr natural gas."

A large number of sources in this permit application are emergency generators. As stated in the AEHD AQD Internal Combustion Engine Permitting Policy, effective November 18, 1998, *internal combustion engines permitted for emergency use do not require an air dispersion modeling analysis.*

This page intentionally left blank

11.0 Certification of Compliance Status

Attachment D, Table D-3, Summary of Applicable Requirements by Source Category provides a detailed summary of Kirtland AFB's compliance with all applicable requirements.

This page intentionally left blank

12.0 Statement of Continued Compliance

Kirtland AFB will continue to be in compliance with requirements for which it is in compliance at the time of this permit renewal application. Kirtland AFB is committed to complying with other applicable requirements as they come into effect during the permit term. Compliance will occur in a timely manner and be consistent with the schedule expressly required by the applicable requirement. This page intentionally left blank

13.0 Enhanced Monitoring and Compliance Certification

Kirtland AFB is not currently subject to any enhanced monitoring and compliance certification requirements of the Federal Act.

This page intentionally left blank

Attachment A

AEHD AQD Operating Permit Application Forms

City of Albuquerque Environmental Health Department Air Quality Division One Civic Plaza NW 3rd Floor, Room 3023 Albuquerque, New Mexico 87102 Telephone: (505) 768-1972 Fax: (505) 768-1977 20.11.42 NMAC Operating Permit Application Form

Please answer all questions applicable to your specific business, operation and products. Use the abbreviation "N.A." for "not applicable" wherever appropriate.

SECTION 1 - GENERAL INFORMATION (20.11.42.12A.(4) NMAC)

{Specific instructions corresponding to numbers in brackets are included in the application package.}

1.	Company Name: {1} U.S. Air Force - Kirtland Air Force Base (AFB)	
2.	Application Date: January 2022	
3.	Company Mailing Address: 377 MSG/CE Environmental, 2050 Wyoming Blvd., SE, Kirtland AFB, 1	NM 87117-5270 4.Phone: (505) 8 53-1588
5.	Owner's Name: {2}U.S. Air Force - Kirtland AFB	6. Phone: (505) 846-7377
7.	Owner's Address: Same as above	
8.	Plant Name: {3} {if different from 1.}	9. Phone:
10.	Plant Address: {if different from 3.}	
11.	Operator of Plant: {4} <u>Melissa Clark</u>	12. Phone: (505) 853-1588
13.	Plant Operator Address: N.A.	
14.	Responsible Official {5}: <u>Jason F. Vattioni, Colonel, USAF Commander</u>	15. Phone: (505) 846-7377
16.	Address of Responsible Official: 2000 Wyoming Blvd SE Kirtland AFB, NM, 87117-5000	
17.	Person to Contact at Site {6}: <u>Andria Cuevas</u> 18. Title: <u>Air Program Manager</u>	19. Phone:
20.	Owner's Agent(s):{7} <u>N.A.</u>	21. Phone:
22.	Company's State of Incorporation or Registration to do Business: <u>N.A.</u>	
23.	Company's Corporate or Partnership Relationship to any other Air Quality Permittee: {8}N.A	
24.	Name of Parent Company: {9} N.A.	
25.	Address of Parent Company: N.A.	
26.	Names of Subsidiary Companies: {10} N.A.	
27.	Air Quality Permits for this Source Already Received: (Permit Number(s))	
28.	Other Air Quality Permits Issued to this Applicant: (Permit Number(s)) Construction Permits: 484-M	13, 1759-M1-RV1, 1770-RV3, 1777-RV2, 1786-M5,
	1945, 2085, 2100, 2105-RV1, 3048-2TR, 3070-M1-1TR, 3090-RV1, 3101-RV1, 3102, 3128, 3129, 3	141-RV1, 3308, 3329, 3331, 3366, Registration
	Certifications: 3047, 3102, 3329	

- 29. Reason this source must have a Part 42 operating permit: {11} <u>Kirtland AFB's potential emissions of nitrogen oxides (NO_x) and volatile organic compounds</u> (VOCs) are greater than 100 tons per year (tpy).
- 30. Is U.S.G.S. quadrangular map or equivalent attached? {12} See Attachment E of the Title V operating permit application
- Ownership of land at plant site (private, State, Federal, Indian, etc.): <u>Federal</u> NOTE: If the land at the plant site is Indian land, contact the Air Pollution Control Division Engineering staff for assistance.
- 32. Distance, in meters, of plant site to nearest residence, school or occupied structure: {13} 0 meters, residences and schools are located on Kirtland AFB
- 33. Location of Plant:
 - 33A. City or County: <u>Bernalillo County</u> 33B. Direction and distance from nearest town: <u>Adjacent to and south of Alb uquerque, NM</u>
 - 33C. UTM Zone: <u>4751 (New Mexico, Central)</u> UTME: <u>360</u> km UTMN: <u>3,900</u> km
 - 33D. Range: ______ Township: ______ Section: ______ 30E. Latitude: ______ Longitude:
- 34. Plant Elevation <u>5,350</u> ft above mean sea level
- 35. Describe briefly type of plant and nature of processes (or modification) and products, including primary and secondary SIC codes: {14} <u>The primary activity</u> at Kirtland AFB is classified under SIC code 97, National Security. Kirtland AFB's primary source of emissions includes boilers, generators, paint booths, remediation activities and fuel loading, storage, and dispensing. Support activities that are related to the primary activity of the installation are classified under SIC code 49, Utilities and SIC code 92, Fire Protection/Police.
- 36. Describe briefly any processes or products associated with any alternative operating scenarios described in this application, including primary and secondary SIC codes {15}: N.A.
- 37. Plant's Maximum Allowable Hourly and Annual Capacities (specify units) {16}: Hourly: N.A.
 - Annual N.A.
- 38. Permit Renewals or Significant Modifications
 - 38A. Is this an application for an operating permit renewal or significant modification? Yes X No _____
 - 38B. If yes, when does the current operating permit expire? 22 January 2023
- 39. Is this a portable or temporary source {17}? Yes _____ No __X__.
 - 39A. If yes, provide identifying numbers (e.g. serial numbers):

39B. If yes, date of anticipated startup: _____ 40C. If yes, date of anticipated relocation:

- 40. Operational Periods: (20 NMAC 11.42.II.1.1.D.5.f.)
 - 40A. Specify standard operational periods:
 - _____hours per day, __6_ am to _5_ pm, ___7_ days per week, __4_ weeks per month, ___12_ months per year.
 - 40B. Specify **maximum** operational periods:

_____24 hours per day, ___12 am to __12 pm, ___7 days per week, ___4 weeks per month, ___12 months per year.

UNIT No. {1}	EMISSIONS UNITS, DDO CESS			MEASUREMENT OR	APPLICABLE
	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
12009	Soil Vapor Extraction with Granulated Activated	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.40 NMAC
12009	Carbon	(NO _x)	N/A ¹	(Emission Calculations)	20.11.40 NWAC
12009	Soil Vapor Extraction with Granulated Activated	Carbon Monoxide	N/A ¹	See Attachment C	20.11.40 NMAC
12009	Carbon	(CO)	N/A ¹	(Emission Calculations)	20.11.40 NMAC
12009	Soil Vapor Extraction with Granulated Activated	Volatile Organic Compounds	N/A^1	See Attachment C	20.11.40 NMAC
12009	Carbon	(VOC)	N/A^1	(Emission Calculations)	20.11.40 NMAC
12009	Soil Vapor Extraction with Granulated Activated	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.40 NMAC
12009	Carbon	(SO ₂)	N/A^1	(Emission Calculations)	20.11.40 NWAC
12009	Soil Vapor Extraction with Granulated Activated	Total Suspended	N/A^1	See Attachment C	20.11.40 NMAC
12009	Carbon	Particulate Matter (TSP)	N/A^1	(Emission Calculations)	20.11.40 NMAC
12009	Soil Vapor Extraction with Granulated Activated	Particulate Matter (PM10)	N/A^1	See Attachment C	20.11.40 NMAC
12009	Carbon	rarieulate Watter (1 W10)	N/A ¹	(Emission Calculations)	20.11.40 NMAC
12009	Soil Vapor Extraction with Granulated Activated	Particulate Matter	N/A ¹	See Attachment C	20.11.40 NMAC
12009	Carbon	(PM _{2.5})	N/A ¹	(Emission Calculations)	20.11.40 NMAC
12009	Soil Vapor Extraction with Granulated Activated	Hazardous Air Pollutants	N/A ¹	See Attachment C	20.11.40 NMAC
12009	Carbon	(HAP)	N/A ¹	(Emission Calculations)	

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
12009	Soil Vapor Extraction with Granulated Activated Carbon	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.40 NMAC
12010	Soil Vapor Extraction with	Oxides of Nitrogen	0.17 lb/hr	See Attachment C	2011 41 33 44 0
12010	Thermal Oxidizer	(NO _x)	0.75 tpy	(Emission Calculations)	20.11.41 NMAC
12010	Soil Vapor Extraction with	Carbon Monoxide	0.08 lb/hr	See Attachment C	20.11.41.33.44.0
12010	Thermal Oxidizer	(CO)	0.33 tpy	(Emission Calculations)	20.11.41 NMAC
12010	Soil Vapor Extraction with	Volatile Organic	0.28 lb/hr	See Attachment C	20.11.41 NMAC
12010	Thermal Oxidizer	Compounds (VOC)	1.25 tpy	(Emission Calculations)	20.11.41 NMAC
12010	Soil Vapor Extraction with	Sulfur Dioxide	N/A^1	See Attachment C	20.11.41 NMAC
12010	Thermal Oxidizer	(SO ₂)	N/A^1	(Emission Calculations)	20.11.41 NMAC
12010	Soil Vapor Extraction with	Total Suspended	N/A^1	See Attachment C	20.11.41 NMAC
12010	Thermal Oxidizer	Particulate Matter (TSP)	N/A^1	(Emission Calculations)	20.11.41 NMAC
12010	Soil Vapor Extraction with	Particulate Matter (PM10)	N/A^1	See Attachment C	20.11.41 NMAC
12010	Thermal Oxidizer	r articulate Matter (FM ₁₀)	N/A ¹	(Emission Calculations)	20.11.41 NMAC
12010	Soil Vapor Extraction with	Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC
12010	Thermal Oxidizer	(PM _{2.5})	N/A ¹	(Emission Calculations)	20.11.41 NMAC

	UNCONTROLLED (20.1	() /	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
12010	Soil Vapor Extraction with	Hazardous Air Pollutants	0.00086 lb/hr	See Attachment C	20.11.41 NMAC
12010	Thermal Oxidizer	(HAP)	0.0038 tpy	(Emission Calculations)	20.11.41 NMAC
12010	Soil Vapor Extraction with Thermal Oxidizer	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC
14014	Boiler	Oxides of Nitrogen	0.61 lb/hr	See Attachment C	20.11.40 NMAC
14014	Boller	(NO _x)	2.68 tn/yr	(Emission Calculations)	20.11.40 NMAC
14014	Boiler	Carbon Monoxide	0.51 lb/hr	See Attachment C	20.11.40 NMAC
	Boner	(CO)	2.25 tn/yr	(Emission Calculations)	20.11.10 10000
14014	Boiler	Sulfur Dioxide	0.004 lb/hr	See Attachment C	20.11.40 NMAC
		(SO ₂)	0.02 tn/yr	(Emission Calculations)	
14014	Boiler	Volatile Organic Compounds	0.16 lb/hr	See Attachment C	20.11.40 NMAC
		(VOC)	0.68 tn/yr	(Emission Calculations)	
14014	Boiler	Total Suspended	0.05 lb/hr	See Attachment C	20.11.40 NMAC
	- 51101	Particulate Matter (TSP)	0.2 tn/yr	(Emission Calculations)	
14014	Boiler	Particulate Matter	0.05 lb/hr	See Attachment C	20.11.40 NMAC
1.011	Doner	(PM ₁₀ /PM _{2.5})	0.2 tn/yr	(Emission Calculations)	

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED A EMISSION H		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
14014	Boiler	CO ₂ e	3,203.1 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
14166	Boiler	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.40.884.4.0
14166	Boiler	(NO _x)	N/A^1	(Emission Calculations)	20.11.40 NMAC
14166	Boiler	Carbon Monoxide	N/A ¹	See Attachment C	20.11.40 NMAC
14100	Boller	(CO)	N/A ¹	(Emission Calculations)	
14166	Boiler	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.40 NMAC
14100	Boller	(SO ₂)	N/A^1	(Emission Calculations)	
14166	Boiler	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.40 NMAC
14100	Bolici	(VOC)	N/A ¹	(Emission Calculations)	20.11.40 NMAC
14166	Boiler	Total Suspended	N/A^1	See Attachment C	20.11.40 NMAC
14100	Boller	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)	20.11.40 NMAC
14166	Boiler	Particulate Matter	N/A ¹	See Attachment C	20.11.40 NMAC
14100	Bolier	(PM ₁₀ /PM _{2.5})	N/A ¹	(Emission Calculations)	20.11.40 INMAC
14166	Boiler	CO ₂ e	N/A ¹	See Attachment C	20.11.42 NMAC
14100	Boller	0.020	N/A ¹	(Emission Calculations)	

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED A EMISSION H		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
14167	Boiler	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.40 NMAC
11107	Boller	(NO _x)	N/A^1	(Emission Calculations)	20.11.10 10.000
14167	Boiler	Carbon Monoxide (CO)	N/A ¹	See Attachment C (Emission Calculations)	20.11.40 NMAC
14167	Boiler	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.40 NMAC
14167	Boller	(SO ₂)	N/A ¹	(Emission Calculations)	20.11.40 NMAC
14167	Boiler	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.40 NMAC
14107	Boller	(VOC)	N/A^1	(Emission Calculations)	
14167	Boiler	Total Suspended	N/A^1	See Attachment C	20.11.40 NMAC
11107	Doniel	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)	2011110 111110
14167	Boiler	Particulate Matter	N/A ¹	See Attachment C	20.11.40 NMAC
		(PM ₁₀ /PM _{2.5})	N/A ¹	(Emission Calculations)	
14167	Boiler	CO ₂ e	N/A ¹	See Attachment C	20.11.42 NMAC
		-	N/A ¹	(Emission Calculations)	
14168	Boiler	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.40 NMAC
		(NO _x)	N/A ¹	(Emission Calculations)	

	UNCONTROLLED (20.1		additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE REQUIREMENT(s)
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	{7}
14168	Boiler	Carbon Monoxide	N/A^1	See Attachment C	20.11.40 NMAC
		(CO)	N/A ¹	(Emission Calculations)	
14168	Boiler	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.40 NMAC
		(SO ₂)	N/A ¹	(Emission Calculations)	
14168	Boiler	Volatile Organic Compounds (VOC)	N/A ¹	See Attachment C (Emission Calculations)	20.11.40 NMAC
14168	Boiler	Total Suspended	N/A ¹	See Attachment C	20.11.40 NMAC
14100	Boller	Particulate Matter (TSP)	N/A^1	(Emission Calculations)	
14168	Boiler	Particulate Matter	N/A^1	See Attachment C	20.11.40 NMAC
11100	Bond	(PM ₁₀ /PM _{2.5})	N/A^1	(Emission Calculations)	20.11.10 10000
14168	Boiler	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
14169	Boiler	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.40 NMAC
14109	Bolici	(NO _x)	N/A^1	(Emission Calculations)	20.11.70 NWAC
14169	Boiler	Carbon Monoxide	N/A^1	See Attachment C	20.11.40 NMAC
11102	Boller	(CO)	N/A ¹	(Emission Calculations)	20.11.10 1000

(Use additional sheets if necessary)								
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE			
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}			
14169	Boiler	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.40 NMAC			
14109	Boller	(SO ₂)	N/A^1	(Emission Calculations)	20.11.40 NWAC			
14169	Boiler	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.40 NMAC			
14107	Boller	(VOC)	N/A ¹	(Emission Calculations)	20.11.40 MWAC			
14169	Boiler	Total Suspended	N/A^1	See Attachment C	20.11.40 NMAC			
11105	Doniel	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)				
14169	Boiler	Particulate Matter	N/A ¹	See Attachment C	20.11.40 NMAC			
		(PM ₁₀ /PM _{2.5})	N/A^1	(Emission Calculations)				
14169	Boiler	CO ₂ e	N/A^1	See Attachment C (Emission Calculations)	20.11.42 NMAC			
15001	Gasoline Dispensing	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC			
15001	Gasonne Dispensing	(NO _x)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC			
15001	Gasoline Dispensing	Carbon Monoxide	N/A^1	See Attachment C	20.11.41 NMAC			
15001	Casonic Dispensing	(CO)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC			
15001	Gasoline Dispensing	Sulfur Dioxide	N/A^1	See Attachment C	20.11.41 NMAC			
	D appending	(SO ₂)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC			

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED A EMISSION I		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
15001	Gasoline Dispensing	Volatile Organic Compounds	28.08 lb/hr	See Attachment C	20.11.41 NMAC
15001	Gasonic Dispensing	(VOC)	4.04 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15001	Gasoline Dispensing	Total Suspended	N/A^1	See Attachment C	20.11.41 NMAC
10001		Particulate Matter (TSP)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15001	Gasoline Dispensing	Particulate Matter	N/A^1	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart CCCCCC
10001	Sussenie Dispensing	(PM ₁₀ /PM _{2.5})	N/A ¹	(Emission Calculations)	
15001	Gasoline Dispensing	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
15004	Gasoline Dispensing	Oxides of Nitrogen	N/A^1	See Attachment C	20.11.41 NMAC
15004	Gasonne Dispensing	(NO _x)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15004	Gasoline Dispensing	Carbon Monoxide	N/A^1	See Attachment C	20.11.41 NMAC
15004	Gasonic Dispensing	(CO)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15004	Gasoline Dispensing	Sulfur Dioxide	N/A^1	See Attachment C	20.11.41 NMAC
13004	Gusonne Dispensing	(SO ₂)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15004	Gasoline Dispensing	Volatile Organic Compounds	14.04 lb/hr	See Attachment C	20.11.41 NMAC
13004	Gasoline Dispensing	(VOC)	0.82 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
15004	Gasoline Dispensing	Total Suspended	N/A ¹	See Attachment C	20.11.41 NMAC
15004	Gasonic Dispensing	Particulate Matter (TSP)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15004	Gasoline Dispensing	Particulate Matter	N/A^1	See Attachment C	20.11.41 NMAC
15001	Gusonne Dispensing	(PM ₁₀ /PM _{2.5})	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15004	Gasoline Dispensing	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
15008	Gasoline Dispensing	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart CCCCCC
15008	Gasonne Dispensing	(NO _x)	N/A^1	(Emission Calculations)	
15008	Gasoline Dispensing	Carbon Monoxide	N/A^1	See Attachment C	20.11.41 NMAC
15000	Gasonic Dispensing	(CO)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15008	Gasoline Dispensing	Sulfur Dioxide	N/A^1	See Attachment C	20.11.41 NMAC
15000	Gasonic Dispensing	(SO ₂)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15008	Gasoline Dispensing	Volatile Organic Compounds	12.00 lb/hr	See Attachment C	20.11.41 NMAC
15000	Gasonne Dispensing	(VOC)	0.2 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15008	Gasoline Dispensing	Total Suspended	N/A^1	See Attachment C	20.11.41 NMAC
15000	Gasoline Dispensing	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC

	x	(Use a	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or		UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
15008	Gasoline Dispensing	Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC
15000	Gusonne Dispensing	(PM ₁₀ /PM _{2.5})	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15008	Gasoline Dispensing	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
15011	E95 Eucl Dimension	Oxides of Nitrogen	N/A^1	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart CCCCCC
15011	E85 Fuel Dispensing	(NO _x)	N/A ¹	(Emission Calculations)	
15011	E85 Fuel Dispensing	Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart CCCCCC
15011	Los i dei Dispensing	(CO)	N/A^1	(Emission Calculations)	
15011	E85 Fuel Dispensing	Sulfur Dioxide	N/A^1	See Attachment C	20.11.41 NMAC
10011	Lot I dei Dispenning	(SO ₂)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15011	E85 Fuel Dispensing	Volatile Organic Compounds	14.04 lb/hr	See Attachment C	20.11.41 NMAC
		(VOC)	2.98 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15011	E85 Fuel Dispensing	Total Suspended	N/A ¹	See Attachment C	20.11.41 NMAC
	g	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
15011	E85 Fuel Dispensing	Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC
	E65 Fuel Dispensing	(PM ₁₀ /PM _{2.5})	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC

UNIT	EMISSIONS UNITS, PROCESS or			MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
15011	E85 Fuel Dispensing	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
16001	Gasoline Loading	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC
10001	Gasonne Loading	(NO _x)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart BBBBB
16001	Gasoline Loading	Carbon Monoxide	N/A^1	See Attachment C	20.11.41 NMAC
10001	Gasonne Loading	(CO)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart BBBBB
16001	Gasoline Loading	Sulfur Dioxide	N/A^1	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart BBBBB
10001	Gasonne Loading	(SO ₂)	N/A^1	(Emission Calculations)	
16001	Gasoline Loading	Volatile Organic Compounds	105.55 lb/hr	See Attachment C	20.11.41 NMAC
10001	Gasonine Loading	(VOC)	0.26 tn/yr	(Emission Calculations)	40 CFR 63, Subpart BBBBB
16001	Gasoline Loading	Total Suspended	N/A^1	See Attachment C	20.11.41 NMAC
10001	Gasonne Loading	Particulate Matter (TSP)	N/A^1	(Emission Calculations)	40 CFR 63, Subpart BBBBB
16001	Gasoline Loading	Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC
10001	Gasonne Loadnig	(PM ₁₀ /PM _{2.5})	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart BBBBB
16001	Gasoline Loading	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

UNIT No. {1}	EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE
	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
18001	Non-Emergency Landfill	Oxides of Nitrogen	13.12 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
10001	Mulcher Engine	(NO _x)	3.29 tn/yr	(Emission Calculations)	
18001	Non-Emergency Landfill	Carbon Monoxide	2.84 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
18001	Mulcher Engine	(CO)	0.71 tn/yr	(Emission Calculations)	
18001	Non-Emergency Landfill	Sulfur Dioxide	0.87 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
18001	Mulcher Engine	(SO ₂)	0.22 tn/yr	(Emission Calculations)	
18001	Non-Emergency Landfill Mulcher Engine	Volatile Organic Compounds (VOC)	1.05 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
18001			0.26 tn/yr		
18001	Non-Emergency Landfill	Total Suspended Particulate Matter (TSP)	0.94 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
18001	Mulcher Engine		0.23 tn/yr	(Emission Calculations)	
18001	Non-Emergency Landfill Mulcher Engine	Particulate Matter (PM ₁₀ /PM _{2.5})	0.94 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
18001			0.23 tn/yr		
18001	Non-Emergency Landfill Mulcher Engine	CO ₂ e	121.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
18002	Landfill Mulcher	Oxides of Nitrogen (NO _x)	N/A^1	See Attachment C	20.11.41 NMAC
18002			N/A ¹	(Emission Calculations)	

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

	UNCONTROLLED (20.1	())	additional sheets if nec	essary)	
UNIT No. {1}	EMISSIONS UNITS, PROCESS or OPERATION {2}	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
		Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
18002	Landfill Mulcher	Carbon Monoxide (CO)	N/A ¹	See Attachment C	20.11.41 NMAC
18002	Landini Mulenei		N/A ¹	(Emission Calculations)	
18002	Landfill Mulcher	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.41 NMAC
18002	Landini Mulcher	(SO ₂)	N/A ¹	(Emission Calculations)	
18002	Landfill Mulcher	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.41 NMAC
18002	Landini Mulcher	(VOC)	N/A ¹	(Emission Calculations)	
18002	Landfill Mulcher	Total Suspended Particulate Matter (TSP)	1.18 lb/hr	See Attachment C	20.11.41 NMAC
18002			0.30 tn/yr	(Emission Calculations)	
18002	Landfill Mulcher	Particulate Matter	1.18 lb/hr	See Attachment C	20.11.41 NMAC
18002		(PM ₁₀ /PM _{2.5})	0.30 tn/yr	(Emission Calculations)	
18002	Landfill Mulcher	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
19003	Emergency Generator Engine	Oxides of Nitrogen (NO _x)	4.185 lb/hr	See Attachment C	20.11.41 NMAC
19003			0.419 tn/yr	(Emission Calculations)	
19003	Emergency Generator Engine	Carbon Monoxide (CO)	0.902 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
19003			0.09 tn/yr		

	UNCONTROLLED (20.1	())	additional sheets if nec	essary)	
UNIT No. {1}	EMISSIONS UNITS, PROCESS or OPERATION {2}	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
		Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19003	Emergency Generator	Sulfur Dioxide	0.277 lb/hr	See Attachment C	20.11.41 NMAC
19005	Engine	(SO ₂)	0.028 tn/yr	(Emission Calculations)	
19003	Emergency Generator	Volatile Organic Compounds	0.333 lb/hr	See Attachment C	20.11.41 NMAC
19005	Engine	(VOC)	0.033 tn/yr	(Emission Calculations)	
19003	Emergency Generator	Total Suspended	0.297 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	Particulate Matter (TSP)	0.03 tn/yr	(Emission Calculations)	
19003	Emergency Generator	Particulate Matter	0.297 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5})	0.03 tn/yr	(Emission Calculations)	
19003	Emergency Generator Engine	CO ₂ e	15.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19006	Emergency Generator Engine	Oxides of Nitrogen (NO _x)	3.162 lb/hr	See Attachment C	20.11.41 NMAC
19000			0.316 tn/yr	(Emission Calculations)	
19006	Emergency Generator Engine	Carbon Monoxide (CO)	0.681 lb/hr	See Attachment C	20.11.41 NMAC
1,000			0.068 tn/yr	(Emission Calculations)	
19006	Emergency Generator	Sulfur Dioxide (SO ₂)	0.209 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
1,000	Engine		0.021 tn/yr		

UNIT No. {1}	EMISSIONS UNITS, PROCESS or OPERATION {2}	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
		Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19006	Emergency Generator Engine	Volatile Organic Compounds (VOC)	0.252 lb/hr	See Attachment C	20.11.41 NMAC
19000			0.025 tn/yr	(Emission Calculations)	
19006	Emergency Generator	Total Suspended Particulate Matter (TSP)	0.224 lb/hr	See Attachment C	20.11.41 NMAC
19006	Engine		0.022 tn/yr	(Emission Calculations)	
19006	Emergency Generator	Particulate Matter	0.224 lb/hr	See Attachment C	20.11.41 NMAC
19006	Engine	(PM ₁₀ /PM _{2.5})	0.022 tn/yr	(Emission Calculations)	
19006	Emergency Generator Engine	CO ₂ e	11.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
10014	Emergency Generator	Oxides of Nitrogen	17.36 lb/hr	See Attachment C	20.11.41 NMAC
19014	Engine	(NO _x)	1.74 tn/yr	(Emission Calculations)	
19014	Emergency Generator Engine	Carbon Monoxide (CO)	4.61 lb/hr	See Attachment C	20.11.41 NMAC
19014			0.46 tn/yr	(Emission Calculations)	
19014	Emergency Generator Engine	Sulfur Dioxide (SO ₂)	0.0082 lb/hr	See Attachment C	20.11.41 NMAC
19014			0.0008 tn/yr	(Emission Calculations)	
19014	Emergency Generator Engine	Volatile Organic Compounds (VOC)	0.49 lb/hr	See Attachment C	20.11.41 NMAC
19014			0.05 tn/yr	(Emission Calculations)	

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

	UNCONTROLLED (20.1	())	additional sheets if nec	essary)	
UNIT No. {1}	EMISSIONS UNITS, PROCESS or OPERATION {2}	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
		Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19014	Emergency Generator	Total Suspended Particulate Matter (TSP)	0.54 lb/hr	See Attachment C	20.11.41 NMAC
19014	Engine		0.05 tn/yr	(Emission Calculations)	
19014	Emergency Generator	Particulate Matter	0.54 lb/hr	See Attachment C	20.11.41 NMAC
19011	Engine	(PM ₁₀ /PM _{2.5})	0.05 tn/yr	(Emission Calculations)	
19014	Emergency Generator Engine	CO ₂ e	88.8 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19015	Emergency Generator Engine	Oxides of Nitrogen (NO _x)	3.162 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
19013			0.316 tn/yr		
19015	Emergency Generator	Carbon Monoxide	0.681 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
19015	Engine	(CO)	0.068 tn/yr	(Emission Calculations)	
19015	Emergency Generator	Sulfur Dioxide	0.209 lb/hr	See Attachment C	20.11.41 NMAC
19019	Engine	(SO ₂)	0.021 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19015	Emergency Generator Engine	Volatile Organic Compounds (VOC)	0.252 lb/hr	See Attachment C	20.11.41 NMAC
19015			0.025 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19015	Emergency Generator Engine	Total Suspended Particulate Matter (TSP)	0.224 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
19015			0.022 tn/yr		

	UNCONTROLLED (20.1	., , ,	additional sheets if nec	essary)	
UNIT No. {1}	EMISSIONS UNITS, PROCESS or OPERATION {2}	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
		Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19015	Emergency Generator	Particulate Matter (PM ₁₀ /PM _{2.5})	0.224 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
19015	Engine		0.022 tn/yr	(Emission Calculations)	
19015	Emergency Generator Engine	CO ₂ e	11.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19016	Emergency Generator	11	1.58 lb/hr	See Appendix C	20.11.41 NMAC
19016	Engine		(Emission Calculations)	40 CFR 63, Subpart ZZZZ	
19016	Emergency Generator Engine	Carbon Monoxide (CO)	0.341 lb/hr	See Appendix C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
19010			0.034 tn/yr		
19016	Emergency Generator Sulf Engine	Sulfur Dioxide	0.105 lb/hr	See Appendix C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
		(SO ₂)	0.011 tn/yr	(Emission Calculations)	
19016	Emergency Generator	Volatile Organic Compounds	0.126 lb/hr	See Appendix C	20.11.41 NMAC
	Engine	(VOC)	0.013 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19016	Emergency Generator Engine	Total Suspended Particulate Matter (TSP)	0.112 lb/hr	See Appendix C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
			0.011 tn/yr	(Emission Calculations)	
19016	Emergency Generator	Particulate Matter	0.112 lb/hr	See Appendix C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5})	0.011 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

	UNCONTROLLED (20.1	())	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS,	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19016	Emergency Generator Engine	CO ₂ e	4.6 tn/yr	See Appendix C (Emission Calculations)	20.11.42 NMAC
19019	Emergency Generator	Oxides of Nitrogen	3.162 lb/hr	See Attachment C	20.11.41 NMAC
19019	Engine	(NO _x)	0.316 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19019	Emergency Generator	Carbon Monoxide	0.681 lb/hr	See Appendix C	20.11.41 NMAC
19019	Engine	(CO)	0.068 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19019	Emergency Generator	Sulfur Dioxide	0.209 lb/hr	See Attachment C	20.11.41 NMAC
19019	Engine	(SO ₂)	0.021 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19019	Emergency Generator	Volatile Organic Compounds	0.252 lb/hr	See Attachment C	20.11.41 NMAC
19019	Engine	(VOC)	0.025 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19019	Emergency Generator	Total Suspended	0.224 lb/hr	See Attachment C	20.11.41 NMAC
19019	Engine	Particulate Matter (TSP)	0.022 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19019	Emergency Generator	Particulate Matter	0.224 lb/hr	See Attachment C	20.11.41 NMAC
19019	Engine	(PM ₁₀ /PM _{2.5})	0.022 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19019	Emergency Generator Engine	CO ₂ e	11.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED A EMISSION I		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
19031	Emergency Generator	Oxides of Nitrogen	12.6 lb/hr	See Appendix C	20.11.41 NMAC
19051	Engine	(NO _x)	1.26 tn/yr	(Emission Calculations)	
19031	Emergency Generator	Carbon Monoxide	2.97 lb/hr	See Appendix C	20.11.41 NMAC
17031	Engine	(CO)	0.3 tn/yr	(Emission Calculations)	
19031	Emergency Generator	Sulfur Dioxide	0.728 lb/hr	See Appendix C	20.11.41 NMAC
17051	Engine	(SO ₂)	0.073 tn/yr	(Emission Calculations)	
19031	Emergency Generator	Volatile Organic Compounds	0.877 lb/hr	See Appendix C	20.11.41 NMAC
	Engine	(VOC)	0.088 tn/yr	(Emission Calculations)	
19031	Emergency Generator	Total Suspended	0.781 lb/hr	See Appendix C	20.11.41 NMAC
	Engine	Particulate Matter (TSP)	0.078 tn/yr	(Emission Calculations)	
19031	Emergency Generator	Particulate Matter	0.781 lb/hr	See Appendix C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5})	0.078 tn/yr	(Emission Calculations)	
19031	Emergency Generator Engine	CO ₂ e	40.7 tn/yr	See Appendix C (Emission Calculations)	20.11.42 NMAC
19032	Emergency Generator	Oxides of Nitrogen	14.42 lb/hr	See Attachment C	20.11.41 NMAC
19032	Engine	(NO _x)	1.442 tn/yr	(Emission Calculations)	

	UNCONTROLLED (20.1	())	additional sheets if neco	essary)	
UNIT	EMISSIONS UNITS,	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19032	Emergency Generator	Carbon Monoxide	3.106 lb/hr	See Attachment C	20.11.41 NMAC
19032	Engine	(CO)	0.311 tn/yr	(Emission Calculations)	
19032	Emergency Generator	Sulfur Dioxide	0.953 lb/hr	See Attachment C	20.11.41 NMAC
19032	Engine	(SO ₂)	0.095 tn/yr	(Emission Calculations)	
19032	Emergency Generator	Volatile Organic Compounds	1.149 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(VOC)	0.115 tn/yr	(Emission Calculations)	
19032	Emergency Generator	Total Suspended	1.023 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	Particulate Matter (TSP)	0.102 tn/yr	(Emission Calculations)	
19032	Emergency Generator	Particulate Matter	1.023 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5})	0.102 tn/yr	(Emission Calculations)	
19032	Emergency Generator Engine	CO ₂ e	53.3 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19069	Emergency Water Pump	Oxides of Nitrogen	10.54 lb/hr	See Attachment C	20.11.41 NMAC
19009	Engine	(NO _x)	1.054 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19069	Emergency Water Pump	Carbon Monoxide	2.271 lb/hr	See Attachment C	20.11.41 NMAC
19009	Engine	(CO)	0.227 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

	UNCONTROLLED (20.1	., ,	additional sheets if neco	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19069	Emergency Water Pump	Sulfur Dioxide	0.697 lb/hr	See Attachment C	20.11.41 NMAC
19009	Engine	(SO ₂)	0.07 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19069	Emergency Water Pump	Volatile Organic Compounds	0.84 lb/hr	See Attachment C	20.11.41 NMAC
1,000	Engine	(VOC)	0.084 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19069	Emergency Water Pump	Total Suspended	0.748 lb/hr	See Attachment C	20.11.41 NMAC
17007	Engine	Particulate Matter (TSP)	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19069	Emergency Water Pump	Particulate Matter	0.748 lb/hr	See Attachment C	20.11.41 NMAC
1,000	Engine	(PM ₁₀ /PM _{2.5})	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19069	Emergency Water Pump Engine	CO ₂ e	38.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19070	Emergency Water Pump	Oxides of Nitrogen	10.54 lb/hr	See Attachment C	20.11.41 NMAC
19070	19070 Engine	(NO _x)	1.054 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19070	Emergency Water Pump	Carbon Monoxide	2.271 lb/hr	See Attachment C	20.11.41 NMAC
19070	19070 Engine	(CO)	0.227 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

	(···	(Use	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
19070	Emergency Water Pump	Sulfur Dioxide	0.697 lb/hr	See Attachment C	20.11.41 NMAC
19070	Engine	(SO ₂)	0.07 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19070	Emergency Water Pump	Volatile Organic Compounds	0.84 lb/hr	See Attachment C	20.11.41 NMAC
19070	Engine	(VOC)	0.084 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19070	Emergency Water Pump	Total Suspended	0.748 lb/hr	See Attachment C	20.11.41 NMAC
19070	Engine	Particulate Matter (TSP)	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19070	Emergency Water Pump	Particulate Matter	0.748 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
17070	Engine	(PM ₁₀ /PM _{2.5})	0.075 tn/yr	(Emission Calculations)	
19070	Emergency Water Pump Engine	CO ₂ e	38.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19071	Emergency Water Pump	Oxides of Nitrogen	10.54 lb/hr	See Attachment C	20.11.41 NMAC
19071	Engine	(NO _x)	1.054 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19071	Emergency Water Pump	Carbon Monoxide	2.271 lb/hr	See Attachment C	20.11.41 NMAC
19071	Engine	(CO)	0.227 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19071	Emergency Water Pump	Emergency Water Pump Sulfur Dioxide Engine (SO ₂)	0.697 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
190/1	Engine		0.07 tn/yr	(Emission Calculations)	

	× ×	(Use	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED A EMISSION I		MEASUREMENT OR ESTIMATION	APPLICABLE REQUIREMENT(s)
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	{7}
19071	Emergency Water Pump	Volatile Organic Compounds	0.84 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(VOC)	0.084 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19071	Emergency Water Pump	Total Suspended	0.748 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	Particulate Matter (TSP)	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19071	Emergency Water Pump	Particulate Matter	0.748 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5})	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19071	Emergency Water Pump Engine	CO ₂ e	38.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19072	Emergency Water Pump	Oxides of Nitrogen	10.54 lb/hr	See Attachment C	20.11.41 NMAC
19072	Engine	(NO _x)	1.054 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19072	Emergency Water Pump Carbon Monoxide	2.271 lb/hr	See Attachment C	20.11.41 NMAC	
1,072	Engine	(CO)	0.227 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19072	Emergency Water Pump	Sulfur Dioxide	0.697 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
1,0,2	Engine		0.07 tn/yr	(Emission Calculations)	

		(Use	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19072	Emergency Water Pump	Volatile Organic Compounds	0.84 lb/hr	See Attachment C	20.11.41 NMAC
19072	Engine	(VOC)	0.084 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19072	Emergency Water Pump	Total Suspended	0.748 lb/hr	See Attachment C	20.11.41 NMAC
19072	Engine	Particulate Matter (TSP)	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19072	Emergency Water Pump	Particulate Matter	0.748 lb/hr	See Attachment C	20.11.41 NMAC
19072	Engine	(PM ₁₀ /PM _{2.5})	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19072	Emergency Water Pump Engine	CO ₂ e	38.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19073	Emergency Water Pump	Oxides of Nitrogen	10.54 lb/hr	See Attachment C	20.11.41 NMAC
19073	Engine	(NO _x)	1.054 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19073	Emergency Water Pump	Carbon Monoxide	2.271 lb/hr	See Attachment C	20.11.41 NMAC
19073	Engine	(CO)	0.227 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19073	Emergency Water Pump	Sulfur Dioxide	0.697 lb/hr	See Attachment C	20.11.41 NMAC
19073	Engine	(SO ₂)	0.07 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19073	Emergency Water Pump	Volatile Organic Compounds	0.84 lb/hr	See Attachment C	20.11.41 NMAC
17075	Engine	(VOC)	0.084 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
19073	Emergency Water Pump	Total Suspended	0.748 lb/hr	See Attachment C	20.11.41 NMAC
19075	Engine	Particulate Matter (TSP)	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19073	Emergency Water Pump	Particulate Matter	0.748 lb/hr	See Attachment C	20.11.41 NMAC
19070	Engine	(PM ₁₀ /PM _{2.5})	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19073	Emergency Water Pump Engine	CO ₂ e	38.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19074	Emergency Water Pump	ump Oxides of Nitrogen	10.54 lb/hr	See Attachment C	20.11.41 NMAC
19074	Engine	(NO _x)	1.054 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19074	Emergency Water Pump	Carbon Monoxide	2.271 lb/hr	See Attachment C	20.11.41 NMAC
19074	Engine	(CO)	0.227 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19074	Emergency Water Pump	Sulfur Dioxide	0.697 lb/hr	See Attachment C	20.11.41 NMAC
19074	Engine	(SO ₂)	(SO ₂) 0.07 tn/yr (Emission Calculatio	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19074	Emergency Water Pump	Volatile Organic	0.84 lb/hr	See Attachment C	20.11.41 NMAC
19074	Engine	Compounds	0.084 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

	(Use additional sheets if necessary)								
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE				
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}				
19074	Emergency Water Pump	Total Suspended	0.748 lb/hr	See Attachment C	20.11.41 NMAC				
15074	Engine	Particulate Matter (TSP)	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19074	Emergency Water Pump	Particulate Matter	0.748 lb/hr	See Attachment C	20.11.41 NMAC				
15071	Engine	(PM ₁₀ /PM _{2.5})	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19074	Emergency Water Pump Engine	CO ₂ e	38.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC				
19075	Emergency Water Pump	Oxides of Nitrogen	10.54 lb/hr	See Attachment C	20.11.41 NMAC				
19075	Engine	(NO _x)	1.054 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19075	Emergency Water Pump	Carbon Monoxide	2.271 lb/hr	See Attachment C	20.11.41 NMAC				
19075	Engine	(CO)	0.227 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19075	Emergency Water Pump	Sulfur Dioxide	0.697 lb/hr	See Attachment C	20.11.41 NMAC				
19075	Engine	(SO ₂)	0.07 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19075	Emergency Water Pump	Volatile Organic Compounds	0.84 lb/hr	See Attachment C	20.11.41 NMAC				
17075	19075 Engine			(Emission Calculations)	40 CFR 63, Subpart ZZZZ				

	(Use additional sheets if necessary)								
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE REQUIREMENT(s)				
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(S) {7}				
19075	Emergency Water Pump	Total Suspended	0.748 lb/hr	See Attachment C	20.11.41 NMAC				
15075	Engine	Particulate Matter (TSP)	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19075	Emergency Water Pump	Particulate Matter	0.748 lb/hr	See Attachment C	20.11.41 NMAC				
	Engine	(PM ₁₀ /PM _{2.5})	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19075	Emergency Water Pump Engine	CO ₂ e	38.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC				
19076	Emergency Water Pump	Oxides of Nitrogen	10.54 lb/hr	See Attachment C	20.11.41 NMAC				
19070	Engine	(NO _x)	1.054 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19076	Emergency Water Pump	Carbon Monoxide	2.271 lb/hr	See Attachment C	20.11.41 NMAC				
15070	Engine	(CO)	0.227 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19076	Emergency Water Pump	Sulfur Dioxide	0.697 lb/hr	See Attachment C	20.11.41 NMAC				
19070	Engine	(SO ₂)	0.07 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19076	Emergency Water Pump	Volatile Organic Compounds	0.84 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ				
1,010	19076 Engine	(VOC)	0.084 tn/yr	(Emission Calculations)					

	(Use additional sheets if necessary)								
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE				
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}				
19076	Emergency Water Pump	Total Suspended	0.748 lb/hr	See Attachment C	20.11.41 NMAC				
15070	Engine	Particulate Matter (TSP)	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19076	Emergency Water Pump	Particulate Matter	0.748 lb/hr	See Attachment C	20.11.41 NMAC				
	Engine	(PM ₁₀ /PM _{2.5})	0.075 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19076	Emergency Water Pump Engine	CO ₂ e	38.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC				
19089	Emergency Generator Oxi	Generator Oxides of Nitrogen	12.1 lb/hr	See Attachment C	20.11.41 NMAC				
19089	Engine	(NO _x)	1.21 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19089	Emergency Generator	Carbon Monoxide	2.61 lb/hr	See Attachment C	20.11.41 NMAC				
19009	Engine	(CO)	0.26 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19089	Emergency Generator	Sulfur Dioxide	0.80 lb/hr	See Attachment C	20.11.41 NMAC				
19009	Engine	(SO ₂)	0.08 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ				
19089	Emergency Generator	Volatile Organic Compounds	0.96 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ				
1,000	Engine Engine		0.10 tn/yr	(Emission Calculations)					

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE BEOUDEMENT(c)
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19089	Emergency Generator	Total Suspended	0.86 lb/hr	See Attachment C	20.11.41 NMAC
19089	Engine	Particulate Matter (TSP)	0.09 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19089	Emergency Generator	Particulate Matter	0.86 lb/hr	See Attachment C	20.11.41 NMAC
17007	Engine	(PM ₁₀ /PM _{2.5})	0.09 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19089	Emergency Generator Engine	CO ₂ e	38.4 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19091	1 Emergency Generator Oxides of Nitrogen Engine (NO _x)	Oxides of Nitrogen	18.0 lb/hr	See Attachment C	20.11.41 NMAC
19091		1.80 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ	
19091	Emergency Generator	Carbon Monoxide	4.125 lb/hr	See Attachment C	20.11.41 NMAC
17071	Engine	(CO)	0.413 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19091	Emergency Generator	Sulfur Dioxide	0.0091 lb/hr	See Attachment C	20.11.41 NMAC
1,0,1	Engine	(SO ₂)	0.00091 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19091	Emergency Generator	Volatile Organic Compounds	0.529 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(VOC)	0.053 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19091	Emergency Generator	Total Suspended	0.525 lb/hr	See Attachment C	20.11.41 NMAC
17071	19091 Engine	0 5	0.053 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
19091	Emergency Generator	Particulate Matter	0.525 lb/hr	See Attachment C	20.11.41 NMAC
19091	Engine	(PM ₁₀ /PM _{2.5})	0.053 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19091	Emergency Generator Engine	CO ₂ e	85.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19093	Emergency Fire Pump	Oxides of Nitrogen	15.84 lb/hr	See Attachment C	20.11.41 NMAC
19095	Engine	(NO _x)	1.584 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19093	Emergency Fire Pump	Carbon Monoxide	3.63 lb/hr	See Attachment C	20.11.41 NMAC
19095	Engine	(CO)	0.363 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19093	Emergency Fire Pump	· ·	0.00801 lb/hr	See Attachment C	20.11.41 NMAC
17075	Engine		0.0008 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

	×	(Use	additional sheets if neco	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE REQUIREMENT(s)
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	{7}
19093	Emergency Fire Pump	Volatile Organic Compounds	0.465 lb/hr	See Attachment C	20.11.41 NMAC
17075	Engine	(VOC)	0.047 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19093	Emergency Fire Pump	Total Suspended	1.24 lb/hr	See Attachment C	20.11.41 NMAC
17075	Engine	Particulate Matter (TSP)	0.124 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19093	Emergency Fire Pump	Particulate Matter	1.24 lb/hr	See Attachment C	20.11.41 NMAC
17075	Engine	(PM ₁₀ /PM _{2.5})	0.124 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19093	Emergency Fire Pump Engine	CO ₂ e	75.6 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19096	Emergency Generator	Oxides of Nitrogen	17.61 lb/hr	See Attachment C	20.11.41 NMAC
19090	Engine	(NO_x)	1.761 tn/yr	(Emission Calculations)	
19096	Emergency Generator	Carbon Monoxide	4.134 lb/hr	See Attachment C	20.11.41 NMAC
17070	Engine	(CO)	0.413 tn/yr	(Emission Calculations)	
19096	Emergency Generator	Emergency Generator Sulfur Dioxide	1.984 lb/hr	See Attachment C	20.11.41 NMAC
17070	Engine	(SO ₂)	0.198 tn/yr	(Emission Calculations)	
19096	Emergency Generator	Emergency Generator Engine Volatile Organic Compounds (VOC)	1.403 lb/hr	See Attachment C	20.11.41 NMAC
17070			0.140 tn/yr	(Emission Calculations)	

	UNCONTROLLED (20.1	., ,	additional sheets if nece	essary)	
UNIT	EMISSIONS UNITS,	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19096	Emergency Generator	Total Suspended	1.25 lb/hr	See Attachment C	20.11.41 NMAC
19090	Engine	Particulate Matter (TSP)	0.125 tn/yr	(Emission Calculations)	
19096	Emergency Generator	Particulate Matter	1.25 lb/hr	See Attachment C	20.11.41 NMAC
17070	Engine	(PM ₁₀ /PM _{2.5})	0.125 tn/yr	(Emission Calculations)	
19096	Emergency Generator Engine	CO ₂ e	65.1 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19102	Emergency Fire Pump Oxides of Nitrogen	Oxides of Nitrogen	15.84 lb/hr	See Attachment C	20.11.41 NMAC
19102	Engine	(NO _x)	1.584 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19102	Emergency Fire Pump	Carbon Monoxide	3.63 lb/hr	See Attachment C	20.11.41 NMAC
19102	Engine	(CO)	0.363 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19102	Emergency Fire Pump	Sulfur Dioxide	0.00801 lb/hr	See Attachment C	20.11.41 NMAC
19102	Engine	(SO ₂)	0.0008 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19102	Emergency Fire Pump	Volatile Organic Compounds	0.465 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(VOC)	0.047 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19102	Emergency Fire Pump	Total Suspended	1.24 lb/hr	See Attachment C	20.11.41 NMAC
1,102	Engine Engine	Particulate Matter (TSP)	0.124 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

		(Use	additional sheets if nec	essary)	
EMISSIONS	EMISSIONS UNITS,	UNCONTROLLED		MEASUREMENT OR	APPLICABLE
UNIT No. {1}	PROCESS or	ENIISSION	KATES (5)	ESTIMATION	REQUIREMENT(s)
140. [1]	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	{7}
19102	Emergency Fire Pump	Particulate Matter	1.24 lb/hr	See Attachment C	20.11.41 NMAC
19102	Engine	(PM ₁₀ /PM _{2.5})	0.124 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19102	Emergency Fire Pump Engine	CO ₂ e	75.6 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19106	Emergency Generator	Oxides of Nitrogen	5.146 lb/hr	See Attachment C	20.11.41 NMAC
19106	Engine	(NO _x)	0.515 tn/yr	(Emission Calculations)	
19106	8 5	Carbon Monoxide	1.204 lb/hr	See Attachment C	20.11.41 NMAC
19100	Engine	(CO)	0.12 tn/yr	(Emission Calculations)	
19106	Emergency Generator	Sulfur Dioxide	0.34 lb/hr	See Attachment C	20.11.41 NMAC
17100	Engine	(SO ₂)	0.034 tn/yr	(Emission Calculations)	
19106	Emergency Generator	Volatile Organic Compounds	0.41 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(VOC)	0.041 tn/yr	(Emission Calculations)	
19106	Emergency Generator	Emergency Generator Total Suspended	0.365 lb/hr	See Attachment C	20.11.41 NMAC
19100	Engine	Particulate Matter (TSP)	0.037 tn/yr	(Emission Calculations)	
19106	Emergency Generator	Particulate Matter	0.365 lb/hr	See Attachment C	20.11.41 NMAC
17100	19106 Engine	(PM ₁₀ /PM _{2.5})	0.037 tn/yr	(Emission Calculations)	

		(Use	additional sheets if neco	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE REQUIREMENT(s)
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	{7}
19106	Emergency Generator Engine	CO ₂ e	13.6 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19129	Emergency Generator	Oxides of Nitrogen	6.417 lb/hr	See Attachment C	20.11.41 NMAC
19129	Engine	(NO _x)	0.642 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19129	Emergency Generator	Carbon Monoxide	1.383 lb/hr	See Attachment C	20.11.41 NMAC
19129	Engine	(CO)	0.138 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19129	Emergency Generator Sulfur Dioxid	Sulfur Dioxide	0.424 lb/hr	See Attachment C	20.11.41 NMAC
19129	Engine	(SO ₂)	0.042 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19129	Emergency Generator	Volatile Organic Compounds	0.511 lb/hr	See Attachment C	20.11.41 NMAC
19129	Engine	(VOC)	0.051 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19129	Emergency Generator	Total Suspended	0.455 lb/hr	See Attachment C	20.11.41 NMAC
19129	Engine	Particulate Matter (TSP)	0.046 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19129	Emergency Generator	Particulate Matter	0.455 lb/hr	See Attachment C	20.11.41 NMAC
17127	Engine Engine	(PM ₁₀ /PM _{2.5})	0.046 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19129	Emergency Generator Engine	CO ₂ e	23.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC

UNIT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	No. {1} PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19130	Emergency Generator	Oxides of Nitrogen	28.46 lb/hr	See Attachment C	20.11.41 NMAC
17150	Engine	(NO _x)	2.846 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19130	Emergency Generator	Carbon Monoxide	22.23 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(CO)	2.223 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19130	Emergency Generator	Sulfur Dioxide	0.014 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
	Engine	(SO ₂)	0.001 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19130		Volatile Organic Compounds	2.615 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
	Englite	(VOC)	0.262 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19130	Emergency Generator Engine	Total Suspended Particulate Matter (TSP)	1.044 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
	Englie	Tarticulate Matter (151)	0.104 tn/yr		40 CFR 05, Subpart ZZZZ
19130	Emergency Generator Engine	Particulate Matter (PM ₁₀ /PM _{2.5})	1.044 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart ZZZ
		(1110) 1122.5)	0.104 tn/yr		40 CFR 05, Subpart ZZZZ
19130	Emergency Generator Engine	CO ₂ e	135.8 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19131	Emergency Generator	Oxides of Nitrogen	5.27 lb/hr	See Attachment C	20.11.41 NMAC
17151	Engine	(NO _x)	0.53 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	No. {1} PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19131	Emergency Generator	Carbon Monoxide	1.14 lb/hr	See Attachment C	20.11.41 NMAC
19131	Engine	(CO)	0.11 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19131	Emergency Generator	Sulfur Dioxide	0.35 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂)	0.04 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19131	Emergency Generator	Volatile Organic Compounds	0.42 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(VOC)	0.04 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19131	Emergency Generator	Emergency Generator Engine Total Suspended Particulate Matter (TSP)	0.37 lb/hr	See Attachment C	20.11.41 NMAC
	Engine		0.04 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19131	Emergency Generator	Particulate Matter	0.37 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5})	0.04 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19131	Emergency Generator Engine	CO ₂ e	19.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19132	Emergency Generator	Oxides of Nitrogen	8.59 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
19132	Engine	(NO_x)	0.86 tn/yr		40 CFR 63, Subpart ZZZZ
19132	Emergency Generator	ency Generator Carbon Monoxide Engine (CO)	1.85 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
17132	Engine		0.19 tn/yr	(Emission Calculations)	

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

		(Use	additional sheets if nec	essary)	
EMISSIONS UNITS.		UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
UNIT	PROCESS or	EMISSION	RATES {3}	ESTIMATION	REQUIREMENT(s)
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	{7}
19132	Emergency Generator	Sulfur Dioxide	0.57 lb/hr	See Attachment C	20.11.41 NMAC
19152	Engine	(SO ₂)	0.06 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19132	Emergency Generator	Volatile Organic Compounds	0.68 lb/hr	See Attachment C	20.11.41 NMAC
19132	Engine	(VOC)	0.07 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
10122	Emergency Generator	Total Suspended	0.61 lb/hr	See Attachment C	20.11.41 NMAC
19132	Engine	Particulate Matter (TSP)	0.06 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
10122	Emergency Generator	Particulate Matter	0.61 lb/hr	See Attachment C	20.11.41 NMAC
19132	Engine	(PM ₁₀ /PM _{2.5})	0.06 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19132	Emergency Generator Engine	CO ₂ e	31.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
10100	Emergency Generator	Oxides of Nitrogen	18.1 lb/hr	See Attachment C	20.11.41 NMAC
19133	Engine	(NO _x)	1.81 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
10100	Emergency Generator	Emergency Generator Engine Carbon Monoxide (CO)	4.15 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
19133			0.42 tn/yr		
10122	Emergency Generator	Emergency Generator Engine Sulfur Dioxide (SO ₂)	0.97 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
19133			0.10 tn/yr	(Emission Calculations)	

UNIT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	No. {1} PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19133	Emergency Generator	Volatile Organic Compounds	0.53 lb/hr	See Attachment C	20.11.41 NMAC
19135	Engine	(VOC)	0.05 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19133	Emergency Generator	Total Suspended	0.53 lb/hr	See Attachment C	20.11.41 NMAC
17135	Engine	Particulate Matter (TSP)	0.05 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19133	Emergency Generator	Particulate Matter	0.53 lb/hr	See Attachment C	20.11.41 NMAC
17135	Engine	(PM ₁₀ /PM _{2.5})	0.05 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19133	Emergency Generator Engine	CO ₂ e	86.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
	Emergency Generator	Oxides of Nitrogen	13.5 lb/hr	See Attachment C	20.11.41 NMAC
19134	Engine	(NO _x)	1.35 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19134	Emergency Generator	Carbon Monoxide	2.91 lb/hr	See Attachment C	20.11.41 NMAC
19134	Engine	(CO)	0.29 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19134	Emergency Generator	Sulfur Dioxide	0.89 lb/hr	See Attachment C	20.11.41 NMAC
17134	Engine	(SO ₂)	0.09 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19134	Emergency Generator	Volatile Organic	1.07 lb/hr	See Attachment C	20.11.41 NMAC
17134	Engine	Compounds (VOC)	0.11 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

	UNCONTROLLED (20.1	., , ,	additional sheets if neco	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19134	Emergency Generator	Total Suspended	0.96 lb/hr	See Attachment C	20.11.41 NMAC
19134	Engine	Particulate Matter (TSP)	0.10 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19134	Emergency Generator	Particulate Matter	0.96 lb/hr	See Attachment C	20.11.41 NMAC
17134	Engine	(PM ₁₀ /PM _{2.5})	0.10 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19134	Emergency Generator Engine	CO ₂ e	49.8 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19135	Emergency Generator	Emergency Generator Oxides of Nitrogen Engine (NO _x)	52.82 lb/hr	See Attachment C	20.11.41 NMAC
19135	Engine		5.28 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19135	Emergency Generator	Carbon Monoxide	45.67 lb/hr	See Attachment C	20.11.41 NMAC
19100	Engine	(CO)	4.57 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19135	Emergency Generator	Sulfur Dioxide	0.0072 lb/hr	See Attachment C	20.11.41 NMAC
17100	Engine	(SO ₂)	0.00072 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19135	Emergency Generator	Volatile Organic Compounds	0.36 lb/hr	See Attachment C	20.11.41 NMAC
1,100	Engine	(VOC)	0.036 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19135	Emergency Generator	Total Suspended	0.12 lb/hr	See Attachment C	20.11.41 NMAC
17135	Engine		0.012 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ

	×	(Use	additional sheets if nece	essary)	
UNIT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19135	Emergency Generator	Particulate Matter	0.12 lb/hr	See Attachment C	20.11.41 NMAC
17133	Engine	(PM ₁₀ /PM _{2.5})	0.012 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19135	Emergency Generator Engine	CO ₂ e	109.3 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19140	Emergency Generator	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC
19140	Engine	(NO_x)	N/A ¹	(Emission Calculations)	
19140	Emergency Generator	Emergency Generator Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC
19140	Engine	(CO)	N/A ¹	(Emission Calculations)	
19140	Emergency Generator	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.41 NMAC
1,110	Engine	(SO ₂)	N/A ¹	(Emission Calculations)	
19140	Emergency Generator	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.41 NMAC
1,110	Engine	(VOC)	N/A ¹	(Emission Calculations)	
19140	Emergency Generator		N/A ¹	See Attachment C	20.11.41 NMAC
	Engine	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)	
19140	Emergency Generator	Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC
1,110	Engine Engine	(PM ₁₀ /PM _{2.5})	N/A ¹	(Emission Calculations)	

	×	(Use	additional sheets if nece	essary)	
UNIT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19140	Emergency Generator Engine	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
19142	Emergency Generator	Oxides of Nitrogen	3.162 lb/hr	See Attachment C	20.11.41 NMAC
19142	Engine	(NO _x)	0.316 tn/yr	(Emission Calculations)	
19142	Emergency Generator	Carbon Monoxide	0.681 lb/hr	See Attachment C	20.11.41 NMAC
19142	Engine	(CO)	0.0681 tn/yr	(Emission Calculations)	
19142	Emergency Generator Sulfur Diox	Sulfur Dioxide	0.209 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
19142	Engine	Engine (SO ₂)	0.021 tn/yr		
19142	Emergency Generator	Volatile Organic Compounds	0.252 lb/hr	See Attachment C	20.11.41 NMAC
19142	Engine	(VOC)	0.025 tn/yr	(Emission Calculations)	
19142	Emergency Generator	Total Suspended	0.224 lb/hr	See Attachment C	20.11.41 NMAC
19142	Engine	Particulate Matter (TSP)	0.022 tn/yr	(Emission Calculations)	
19142	Emergency Generator	Particulate Matter	0.224 lb/hr	See Attachment C	20.11.41 NMAC
19142	Engine Engine		0.022 tn/yr	(Emission Calculations)	
19142	Emergency Generator Engine	CO ₂ e	11.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC

UNIT EMISSIONS UNITS, PROCESS or		UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19143	Emergency Generator	Oxides of Nitrogen	1.55 lb/hr	See Attachment C	20.11.41 NMAC
17145	Engine	(NO _x)	0.155 tn/yr	(Emission Calculations)	
19143	Emergency Generator	Carbon Monoxide	0.334 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(CO)	0.033 tn/yr	(Emission Calculations)	
19143	Emergency Generator	Sulfur Dioxide	0.103 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂)	0.010 tn/yr	(Emission Calculations)	
19143	Emergency Generator	Volatile Organic Compounds	0.124 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
	Engine	(VOC)	0.012 tn/yr		
19143	Emergency Generator	Total Suspended	0.11 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	Particulate Matter (TSP)	0.011 tn/yr	(Emission Calculations)	
19143	Emergency Generator	Particulate Matter	0.11 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5})	0.011 tn/yr	(Emission Calculations)	
19143	Emergency Generator Engine	CO ₂ e	5.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19147	Emergency Generator	Oxides of Nitrogen	18.6 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
19147	Engine	(NO _x)	1.86 tn/yr	(Emission Calculations)	

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

UNIT EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE	
No. {1}	No. {1} PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19147	Emergency Generator	Carbon Monoxide	4.94 lb/hr	See Attachment C	20.11.41 NMAC
17147	Engine	(CO)	0.49 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19147	Emergency Generator	Sulfur Dioxide	0.97 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂)	0.10 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19147	Emergency Generator	Volatile Organic Compounds	0.52 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(VOC)	0.05 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19147	Emergency Generator	Emergency Generator Engine Total Suspended Particulate Matter (TSP)	0.58 lb/hr	See Attachment C	20.11.41 NMAC
	Engine		0.06 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19147	Emergency Generator	Particulate Matter	0.58 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5})	0.06 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19147	Emergency Generator Engine	CO ₂ e	43.2 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19148	Emergency Generator	Oxides of Nitrogen	18.2 lb/hr	See Attachment C	20.11.41 NMAC
17146	Engine	(NO _x)	1.82 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19148	Emergency Generator	Emergency Generator Engine Carbon Monoxide (CO)	3.91 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart ZZZZ
19110	Engine		0.39 tn/yr	(Emission Calculations)	

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

UNIT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19148	Emergency Generator	Sulfur Dioxide	1.19 lb/hr	See Attachment C	20.11.41 NMAC
17140	Engine	(SO ₂)	0.12 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19148	Emergency Generator	Volatile Organic Compounds	1.44 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(VOC)	0.14 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19148	Emergency Generator	Total Suspended	1.28 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	Particulate Matter (TSP)	0.13 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19148	Emergency Generator		1.28 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5})	0.13 tn/yr	(Emission Calculations)	40 CFR 63, Subpart ZZZZ
19148	Emergency Generator Engine	CO ₂ e	61.3 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19151	Emergency Generator	Oxides of Nitrogen	1.39 lb/hr	See Attachment C	20.11.41 NMAC
19191	Engine	(NO _x)	0.35 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19151	Emergency Generator	Carbon Monoxide	0.66 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(CO)	0.16 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19151	Emergency Generator	Sulfur Dioxide	0.20 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂)	0.05 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII

SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

	UNCONTROLLED (20.1	., ,	additional sheets if nece	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19151	Emergency Generator	Volatile Organic Compounds	0.24 lb/hr	See Attachment C	20.11.41 NMAC
19151	Engine	(VOC)	0.06 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19151	Emergency Generator	Total Suspended	0.21 lb/hr	See Attachment C	20.11.41 NMAC
19191	Engine	Particulate Matter (TSP)	0.05 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19151	Emergency Generator	Particulate Matter	0.21 lb/hr	See Attachment C	20.11.41 NMAC
19191	Engine	(PM ₁₀ /PM _{2.5})	0.05 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19151	Emergency Generator Engine	CO ₂ e	28.3 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19153	Emergency Generator	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC
19135	Engine	(NO _x)	N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII
19153	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.94 lb/hr	See Attachment C	20.11.41 NMAC
17155	Engine	& Oxides of Nitrogen (NOx)	0.79 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19153	Emergency Generator	Carbon Monoxide	4.34 lb/hr	See Attachment C	20.11.41 NMAC
17155	Engine	(CO)	0.43 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19153	Emergency Generator	Sulfur Dioxide	0.009 lb/hr	See Attachment C	20.11.41 NMAC
17155	19153 Engine	(SO ₂)	0.0009 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII

	````	(Use	additional sheets if neco	essary)	
UNIT EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE	
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19153	Emergency Generator	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.41 NMAC
17135	Engine	(VOC)	N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII
19153	Emergency Generator	Total Suspended	0.25 lb/hr	See Attachment C	20.11.41 NMAC
17105	Engine	Particulate Matter (TSP)	0.03 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19153	Emergency Generator	Particulate Matter	0.25 lb/hr	See Attachment C	20.11.41 NMAC
17105	Engine	(PM ₁₀ /PM _{2.5} )	0.03 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19153	Emergency Generator Engine	CO ₂ e	86.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19154	Emergency Generator	Oxides of Nitrogen	2.034 lb/hr	See Attachment C	20.11.41 NMAC
19154	Engine	(NO _x )	0.203 tn/yr	(Emission Calculations)	
19154	Emergency Generator	Carbon Monoxide	0.438 lb/hr	See Attachment C	20.11.41 NMAC
17134	Engine	(CO)	0.044 tn/yr	(Emission Calculations)	
19154	Emergency Generator	Emergency Generator Sulfur Dioxide	0.134 lb/hr	See Attachment C	20.11.41 NMAC
17134	Engine	(SO ₂ )	0.013 tn/yr	(Emission Calculations)	
19154	Emergency Generator	Volatile Organic	0.162 lb/hr	See Attachment C	20.11.41 NMAC
17134	Engine Engine		0.016 tn/yr	(Emission Calculations)	

UNIT EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE	
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19154	Emergency Generator	Total Suspended	0.144 lb/hr	See Attachment C	20.11.41 NMAC
17134	Engine	Particulate Matter (TSP)	0.014 tn/yr	(Emission Calculations)	
19154	Emergency Generator	Particulate Matter	0.144 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5} )	0.014 tn/yr	(Emission Calculations)	
19154	Emergency Generator Engine	CO ₂ e	7.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19155	Emergency Generator	erator Oxides of Nitrogen (NO _x )	N/A ¹	See Attachment C	20.11.41 NMAC
19155	Engine		$N/A^1$	(Emission Calculations)	40 CFR 60, Subpart IIII
19155	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.23 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	& Oxides of Nitrogen (NOx)	0.723 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19155	Emergency Generator	Carbon Monoxide	4.24 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(CO)	0.42 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19155	Emergency Generator	Sulfur Dioxide	2.13 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂ )	0.21 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19155	Emergency Generator	Emergency Generator Engine Volatile Organic Compounds (VOC)	$N/A^1$	See Attachment C	20.11.41 NMAC
	Engine		N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII

#### SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

UNIT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19155	Emergency Generator	Total Suspended	0.19 lb/hr	See Attachment C	20.11.41 NMAC
19155	Engine	Particulate Matter (TSP)	0.019 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19155	Emergency Generator	Particulate Matter	0.19 lb/hr	See Attachment C	20.11.41 NMAC
19135	Engine	(PM ₁₀ /PM _{2.5} )	0.019 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19155	Emergency Generator Engine	CO ₂ e	86.1 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19156	Emergency Generator	ator Oxides of Nitrogen (NO _x )	N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC
19136	Engine		N/A ¹		40 CFR 60, Subpart IIII
19156	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.23 lb/hr	See Attachment C	20.11.41 NMAC
19150	Engine	& Oxides of Nitrogen (NOx)	0.723 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19156	Emergency Generator	Carbon Monoxide	4.24 lb/hr	See Attachment C	20.11.41 NMAC
19150	Engine	(CO)	0.42 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19156	Emergency Generator	Sulfur Dioxide	2.13 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
19150	Engine	(SO ₂ )	0.21 tn/yr		40 CFR 60, Subpart IIII
19156	Emergency Generator	mergency Generator Volatile Organic	N/A ¹	See Attachment C	20.11.41 NMAC
17150	Engine	Compounds (VOC)	N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII

# SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

UNIT EMISSIONS UNITS,		UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19156	Emergency Generator	Total Suspended	0.19 lb/hr	See Attachment C	20.11.41 NMAC
19130	Engine	Particulate Matter (TSP)	0.019 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19156	Emergency Generator	Particulate Matter	0.19 lb/hr	See Attachment C	20.11.41 NMAC
19150	Engine	(PM ₁₀ /PM _{2.5} )	0.019 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19156	Emergency Generator Engine	CO ₂ e	86.1 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19157	Emergency Generator	or Oxides of Nitrogen (NO _x )	N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC
19137	Engine		$N/A^1$		40 CFR 60, Subpart IIII
19157	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.23 lb/hr	See Attachment C	20.11.41 NMAC
19137	Engine	& Oxides of Nitrogen (NOx)	0.723 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19157	Emergency Generator	Carbon Monoxide	4.24 lb/hr	See Attachment C	20.11.41 NMAC
19137	Engine	(CO)	0.42 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19157	Emergency Generator	Sulfur Dioxide	2.13 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
19137	Engine	(SO ₂ )	0.21 tn/yr		40 CFR 60, Subpart IIII
19157	Emergency Generator	nergency Generator Engine Volatile Organic Compounds (VOC)	$N/A^1$	See Attachment C	20.11.41 NMAC
17137	Engine		N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII

#### SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

UNIT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19157	Emergency Generator	Total Suspended	0.19 lb/hr	See Attachment C	20.11.41 NMAC
19137	Engine	Particulate Matter (TSP)	0.019 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19157	Emergency Generator	Particulate Matter	0.19 lb/hr	See Attachment C	20.11.41 NMAC
19137	Engine	(PM ₁₀ /PM _{2.5} )	0.019 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19157	Emergency Generator Engine	CO ₂ e	86.1 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19158	Emergency Generator	Oxides of Nitrogen (NO _x )	N/A ¹	See Attachment C	20.11.41 NMAC
19138	Engine		N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII
19158	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.23 lb/hr	See Attachment C	20.11.41 NMAC
19138	Engine	& Oxides of Nitrogen (NOx)	0.723 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19158	Emergency Generator	Carbon Monoxide	4.24 lb/hr	See Attachment C	20.11.41 NMAC
19136	Engine	(CO)	0.42 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19158	Emergency Generator	Sulfur Dioxide	2.13 lb/hr	See Attachment C	20.11.41 NMAC
19150	Engine	(SO ₂ )	0.21 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19158	Emergency Generator	volatile Organic	N/A ¹	See Attachment C	20.11.41 NMAC
17130	Engine	Compounds (VOC)	N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII

#### SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

	UNCONTROLLED (20.1	., ,	additional sheets if nece	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19158	Emergency Generator	Total Suspended	0.19 lb/hr	See Attachment C	20.11.41 NMAC
19138	Engine	Particulate Matter (TSP)	0.019 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19158	Emergency Generator	Particulate Matter	0.19 lb/hr	See Attachment C	20.11.41 NMAC
17156	Engine	(PM ₁₀ /PM _{2.5} )	0.019 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19158	Emergency Generator Engine	CO ₂ e	86.1 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19159	Emergency Generator		N/A ¹	See Attachment C	20.11.41 NMAC
19139	Engine		N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII
19159	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.06 lb/hr	See Attachment C	20.11.41 NMAC
19139	Engine	& Oxides of Nitrogen (NOx)	8.81 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19159	Emergency Generator	Carbon Monoxide	4.26 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(CO)	5.33 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19159	Emergency Generator Sulfur Dioxide	Sulfur Dioxide	0.01 lb/hr	See Attachment C	20.11.41 NMAC
17107	Engine	(SO ₂ )	0.01 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19159	Emergency Generator	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.41 NMAC
17107	Engine Engine	(VOC)	N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII

	, , , , , , , , , , , , , , , , , , ,	(Use	additional sheets if nece	essary)	
	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19159	Emergency Generator	Total Suspended	0.14 lb/hr	See Attachment C	20.11.41 NMAC
19139	Engine	Particulate Matter (TSP)	0.17 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19159	Emergency Generator	Particulate Matter	0.14 lb/hr	See Attachment C	20.11.41 NMAC
17137	Engine	(PM ₁₀ /PM _{2.5} )	0.17 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19159	Emergency Generator Engine	CO ₂ e	1090.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19160	Emergency Generator	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC
19100	Engine	(NO _x )	N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII
19160	Emergency Generator	Non Methane Hydrocarbons (NMHC)	1.05 lb/hr	See Attachment C	20.11.41 NMAC
17100	Engine	& Oxides of Nitrogen (NOx)	0.10 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19160	Emergency Generator	Carbon Monoxide	0.63 lb/hr	See Attachment C	20.11.41 NMAC
19100	Engine	(CO)	0.1 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19160	Emergency Generator	Emergency Generator Sulfur Dioxide	0.19 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂ )	0.02 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19160	Emergency Generator	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.41 NMAC 40 CFR 60, Subpart IIII
1,100	19160 Engine	(VOC)	N/A ¹	(Emission Calculations)	

UNIT	UNIT No. {1} EMISSIONS UNITS, PROCESS or OPERATION {2}	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}		Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19160	Emergency Generator	Total Suspended	0.05 lb/hr	See Attachment C	20.11.41 NMAC
19100	Engine	Particulate Matter (TSP)	0.005 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19160	Emergency Generator	Particulate Matter	0.05 lb/hr	See Attachment C	20.11.41 NMAC
19100	Engine	(PM ₁₀ /PM _{2.5} )	0.005 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19160	Emergency Generator Engine	CO ₂ e	10.8 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19161	Emergency Generator	Oxides of Nitrogen (NO _x )	N/A ¹	See Attachment C	20.11.41 NMAC
19101	Engine		$N/A^1$	(Emission Calculations)	40 CFR 60, Subpart IIII
19161	Emergency Generator	Non Methane Hydrocarbons (NMHC)	2.29 lb/hr	See Attachment C	20.11.41 NMAC
19101	Engine	& Oxides of Nitrogen (NOx)	0.229 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19161	Emergency Generator	Carbon Monoxide	2.00 lb/hr	See Attachment C	20.11.41 NMAC
19101	Engine	(CO)	0.20 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19161	Emergency Generator	Sulfur Dioxide	0.71 lb/hr	See Attachment C	20.11.41 NMAC
19101	Engine	(SO ₂ )	0.071 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19161	Emergency Generator	Volatile Organic Compounds	$N/A^1$	See Attachment C	20.11.41 NMAC
19101	Engine	(VOC)	N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII

#### SECTION 2 AIR POLLUTANT EMISSIONS RATES PRIOR TO CONTROL OR ABATEMENT EQUIPMENT OR TO ATMOSPHERE IF UNCONTROLLED (20.11.42.12A(4) NMAC) (Use additional sheets if necessary)

	<u> </u>	(Use	additional sheets if nece	essary)	
LINUT	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
UNIT No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19161	Emergency Generator	Total Suspended	0.11 lb/hr	See Attachment C	20.11.41 NMAC
19101	Engine	Particulate Matter (TSP)	0.011 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19161	Emergency Generator	Particulate Matter	0.11 lb/hr	See Attachment C	20.11.41 NMAC
19101	Engine	(PM ₁₀ /PM _{2.5} )	0.011 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19161	Emergency Generator Engine	CO ₂ e	39.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19163	Emergency Generator		N/A ¹	See Attachment C	20.11.41 NMAC
19103	Engine		N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII
19163	Emergency Generator	Non Methane Hydrocarbons (NMHC)	2.64 lb/hr	See Attachment C	20.11.41 NMAC
19105	Engine	& Oxides of Nitrogen (NOx)	0.26 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19163	Emergency Generator	Carbon Monoxide	2.29 lb/hr	See Attachment C	20.11.41 NMAC
19105	Engine	(CO)	0.23 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19163	19163 Emergency Generator Engine (SO ₂ )	0.82 lb/hr	See Attachment C	20.11.41 NMAC	
17105		(SO ₂ )	0.08 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19163	Emergency Generator	Volatile Organic	N/A ¹	See Attachment C	20.11.41 NMAC
17105	Engine		N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII

UNIT EMISSIONS UNITS,	· · · · · · · · · · · · · · · · · · ·	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19163	Emergency Generator	Total Suspended	0.13 lb/hr	See Attachment C	20.11.41 NMAC
17105	Engine	Particulate Matter (TSP)	0.01 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19163	Emergency Generator	Particulate Matter	0.13 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5} )	0.01 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19163	Emergency Generator Engine	CO ₂ e	45.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19164	Emergency Generator	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC
19104	Engine	(NO _x )	N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII
19164	Emergency Generator	Non Methane Hydrocarbons (NMHC)	1.65 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	& Oxides of Nitrogen (NOx)	0.17 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19164	Emergency Generator	Carbon Monoxide	1.43 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(CO)	0.14 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19164	Emergency Generator Engine	Sulfur Dioxide	0.51 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂ )	0.051 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19164	Emergency Generator Engine		N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC
Enį	Englic	(VOC)	N/A ¹	(Emission Calculations)	40 CFR 60, Subpart IIII

UNIT EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE	
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19164	Emergency Generator	Total Suspended	0.083 lb/hr	See Attachment C	20.11.41 NMAC
17104	Engine	Particulate Matter (TSP)	0.0083 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19164	Emergency Generator	Particulate Matter	0.083 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5} )	0.0083 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19164	Emergency Generator Engine	CO ₂ e	28.6 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19168	Emergency Generator Oxides of Nitrogen	0.78 lb/hr	See Attachment C	20.11.41 NMAC	
19108	Engine	(NO _x )	0.078 tn/yr	(Emission Calculations)	
19168	Emergency Generator	Carbon Monoxide	0.17 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(CO)	0.017 tn/yr	(Emission Calculations)	
19168	Emergency Generator	Sulfur Dioxide	0.05 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂ )	0.005 tn/yr	(Emission Calculations)	
19168	Emergency Generator	Volatile Organic Compounds	0.06 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(VOC)	0.006 tn/yr	(Emission Calculations)	
19168	Emergency Generator	Total Suspended	0.06 lb/hr	See Attachment C	20.11.41 NMAC
Engine	Engine	Particulate Matter (TSP)	0.006 tn/yr	(Emission Calculations)	

	UNCONTROLLED (20.1	., ,	additional sheets if neco	essary)	
UNIT	EMISSIONS UNITS,	ENIISSION RATES		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19168	Emergency Generator	Particulate Matter	0.06 lb/hr	See Attachment C	20.11.41 NMAC
19100	Engine	(PM ₁₀ /PM _{2.5} )	0.006 tn/yr	(Emission Calculations)	
19168	Emergency Generator Engine	CO ₂ e	2.9 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
101/0	Emergency Generator	Oxides of Nitrogen	15.44 lb/hr	See Attachment C	20.11.41 NMAC
19169	Engine	(NO _x )	1.54 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19169	Emergency Generator Hydrocs	Non Methane Hydrocarbons (NMHC)	15.77 lb/hr	See Attachment C	20.11.41 NMAC
19109	Engine	& Oxides of Nitrogen (NOx)	1.58 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19169	Emergency Generator	Carbon Monoxide	8.54 lb/hr	See Attachment C	20.11.41 NMAC
19109	Engine	(CO)	0.85 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19169	Emergency Generator	Sulfur Dioxide	0.36 lb/hr	See Attachment C	20.11.41 NMAC
17107	Engine	(SO ₂ )	0.04 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19169	Emergency Generator Volatile Organic Compounds	0.33 lb/yr	See Attachment C	20.11.41 NMAC	
19109	Engine	(VOC)	0.03 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19169	Emergency Generator	Total Suspended	0.49 lb/hr	See Attachment C	20.11.41 NMAC
17107	Engine Engine		0.05 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII

	× ×	(Use	additional sheets if neco	essary)	
UNIT	EMISSIONS UNITS, PROCESS or		UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19169	Emergency Generator	Particulate Matter	0.49 lb/hr	See Attachment C	20.11.41 NMAC
17107	Engine	(PM ₁₀ /PM _{2.5} )	0.05 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19169	Emergency Generator Engine	CO ₂ e	170.6 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19170	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.99 lb/hr	See Attachment C	20.11.41 NMAC
19170	Engine	& Oxides of Nitrogen (NOx)	0.80 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19170	Emergency Generator Carbon Monoxide	4.33 lb/hr	See Attachment C	20.11.41 NMAC	
1,110	Engine	(CO)	0.43 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19170	Emergency Generator	Sulfur Dioxide	0.01 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂ )	0.001 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19170	Emergency Generator	Total Suspended	0.25 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	Particulate Matter (TSP)	0.02 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19170	Emergency Generator		0.25 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5} )	0.02 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19170	Emergency Generator Engine	CO ₂ e	87.1 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC

	UNCONTROLLED (20.1	(Use	additional sheets if neco	essary)	
UNIT	EMISSIONS UNITS,	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19171	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.99 lb/hr	See Attachment C	20.11.41 NMAC
17171	Engine	& Oxides of Nitrogen (NOx)	0.80 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19171	Emergency Generator	Carbon Monoxide	4.33 lb/hr	See Attachment C	20.11.41 NMAC
19171	Engine	(CO)	0.43 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19171	Emergency Generator	Sulfur Dioxide	0.01 lb/hr	See Attachment C	20.11.41 NMAC
19171	Engine	(SO ₂ )	0.001 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19171	Emergency Generator	rator Total Suspended Particulate Matter (TSP)	0.25 lb/hr	See Attachment C	20.11.41 NMAC
191/1	Engine		0.02 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19171	Emergency Generator	Particulate Matter	0.25 lb/hr	See Attachment C	20.11.41 NMAC
191/1	Engine	(PM ₁₀ /PM _{2.5} )	0.02 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19171	Emergency Generator Engine	CO ₂ e	86.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19172	2 Emergency Generator Engine Mon Methane Hydrocarbons (NMHC) & Oxides of Nitrogen (NOx)		7.99 lb/hr	See Attachment C	20.11.41 NMAC
19172		Engine & Oxides of Nitrogen	0.80 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19172	Emergency Generator	Carbon Monoxide	4.33 lb/hr	See Attachment C	20.11.41 NMAC
171/2	19172 Engine		0.43 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII

	UNCONTROLLED (20.1		additional sheets if nece	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19172	Emergency Generator	Sulfur Dioxide	0.01 lb/hr	See Attachment C	20.11.41 NMAC
19172	Engine	(SO ₂ )	0.001 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19172	Emergency Generator	Total Suspended	0.25 lb/hr	See Attachment C	20.11.41 NMAC
19172	Engine	Particulate Matter (TSP)	0.02 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19172	Emergency Generator	Particulate Matter	0.25 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 60, Subpart IIII
17172	Engine	(PM ₁₀ /PM _{2.5} )	0.02 tn/yr	(Emission Calculations)	
19172	Emergency Generator Engine	CO ₂ e	86.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19173	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.99 lb/hr	See Attachment C	20.11.41 NMAC
19175	Engine	& Oxides of Nitrogen (NOx)	0.80 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19173	Emergency Generator	Carbon Monoxide	4.33 lb/hr	See Attachment C	20.11.41 NMAC
19175	Engine	(CO)	0.43 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19173	Emergency Generator	Emergency Generator Sulfur Dioxide	0.01 lb/hr	See Attachment C	20.11.41 NMAC
17175	Engine	(SO ₂ )	0.001 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19173	Emergency Generator	Total Suspended	0.25 lb/hr	See Attachment C	20.11.41 NMAC
17175	Engine		0.02 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII

	× ×	(Use	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
19173	Emergency Generator	Particulate Matter	0.25 lb/hr	See Attachment C	20.11.41 NMAC
17175	Engine	(PM ₁₀ /PM _{2.5} )	0.02 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19173	Emergency Generator Engine	CO ₂ e	86.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19174	Emergency Generator	Non Methane Hydrocarbons (NMHC)	12.92 lb/hr	See Attachment C	20.11.41 NMAC
19174	Engine	& Oxides of Nitrogen (NOx)	1.33 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19174		Carbon Monoxide	7.00 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	e (CO)	0.70 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19174	Emergency Generator	Sulfur Dioxide	0.32 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂ )	0.03 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19174	Emergency Generator	Total Suspended	0.40 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	Particulate Matter (TSP) 0.04 tn/yr (Emission C	(Emission Calculations)	40 CFR 60, Subpart IIII	
19174	Emergency Generator		0.40 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5} )	0.04 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19174	Emergency Generator Engine	CO ₂ e	139.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC

	UNCONTROLLED (20.1	() /	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
19176	Emergency Generator	Non Methane Hydrocarbons (NMHC)	7.17 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	& Oxides of Nitrogen (NOx)	0.72 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19176	Emergency Generator	Carbon Monoxide	4.33 lb/hr	See Attachment C	20.11.41 NMAC
19170	Engine	(CO)	0.43 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19176	Emergency Generator	Sulfur Dioxide	0.01 lb/hr	See Attachment C	20.11.41 NMAC
19170	Engine	(SO ₂ )	0.001 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19176	Emergency Generator	Total Suspended	0.25 lb/hr	See Attachment C	20.11.41 NMAC
19170	Engine	Particulate Matter (TSP)	0.025 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19176	Emergency Generator	Particulate Matter	0.25 lb/hr	See Attachment C	20.11.41 NMAC
19170	Engine	(PM ₁₀ /PM _{2.5} )	0.025 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19176	Emergency Generator Engine	CO ₂ e	86.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19177	Emergency Generator Hydrocarbons (NMHC)	Hydrocarbons (NMHC)	7.17 lb/hr	See Attachment C	20.11.41 NMAC
17177	Engine	& Oxides of Nitrogen (NOx)	0.72 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19177	Emergency Generator	Carbon Monoxide	4.33 lb/hr	See Attachment C	20.11.41 NMAC
1,71//	Engine		0.43 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII

	UNCONTROLLED (20.1	() )	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
19177	Emergency Generator	Sulfur Dioxide	0.01 lb/hr	See Attachment C	20.11.41 NMAC
19177	Engine	(SO ₂ )	0.001 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19177	Emergency Generator	Total Suspended	0.25 lb/hr	See Attachment C	20.11.41 NMAC
19177	Engine	Particulate Matter (TSP)	0.025 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19177	Emergency Generator	Particulate Matter	0.25 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 60, Subpart IIII
	Engine	(PM ₁₀ /PM _{2.5} )	0.025 tn/yr	(Emission Calculations)	
19177	Emergency Generator Engine	CO ₂ e	86.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19178	Emergency Generator	Non Methane Hydrocarbons (NMHC)	11.71 lb/hr	See Attachment C	20.11.41 NMAC
19178	Engine	& Oxides of Nitrogen (NOx)	1.16 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19178	Emergency Generator	Carbon Monoxide	7.00 lb/hr	See Attachment C	20.11.41 NMAC
19178	Engine	(CO)	0.70 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19178	Emergency Generator	Sulfur Dioxide	0.32 lb/hr	See Attachment C	20.11.41 NMAC
1,170	Engine	(SO ₂ )	0.03 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19178	Emergency Generator	Total Suspended	0.40 lb/hr	See Attachment C	20.11.41 NMAC
19170	19178 Engine	Particulate Matter (TSP)	0.04 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS,	UNCONTROLLED A EMISSION I		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
19178	Emergency Generator	Particulate Matter	0.40 lb/hr	See Attachment C	20.11.41 NMAC
17170	Engine	(PM ₁₀ /PM _{2.5} )	0.04 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19178	Emergency Generator Engine	CO ₂ e	139.7 tn/yr	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 60, Subpart IIII
19179	Emergency Generator	Non Methane Hydrocarbons (NMHC)	0.57 lb/hr	See Attachment C	20.11.41 NMAC
19179	Engine	& Oxides of Nitrogen (NOx)	0.06 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19179	Emergency Generator	Carbon Monoxide	0.61 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 60, Subpart IIII
1,11,7	Engine	(CO)	0.06 tn/yr	(Emission Calculations)	
19179	Emergency Generator	Sulfur Dioxide	0.15 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂ )	0.02 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19179	Emergency Generator	Total Suspended Particulate Matter (TSP)	0.004 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
	Engine	Particulate Matter (1SP)	0.0004 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19179	Emergency Generator	Particulate Matter	0.004 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(PM ₁₀ /PM _{2.5} )	0.0004 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19179	Emergency Generator Engine	CO ₂ e	8.5 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19181	Emergency Generator	Non Methane Hydrocarbons (NMHC)	0.93 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 60, Subpart IIII
17101	Engine	& Oxides of Nitrogen (NOx)	0.093 tn/yr	(Emission Calculations)	
19181	Emergency Generator	Carbon Monoxide	1.01 lb/hr	See Attachment C	20.11.41 NMAC
17101	Engine	(CO)	0.10 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII

	UNCONTROLLED (20.1	() /	additional sheets if neco	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
19181	Emergency Generator	Sulfur Dioxide	0.36 lb/hr	See Attachment C	20.11.41 NMAC
19101	Engine	(SO ₂ )	0.04 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19181	Emergency Generator	Total Suspended	0.06 lb/hr	See Attachment C	20.11.41 NMAC
19101	Engine	Particulate Matter (TSP)	0.006 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19181	Emergency Generator	Particulate Matter	0.06 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 60, Subpart IIII
	Engine	(PM ₁₀ /PM _{2.5} )	0.006 tn/yr	(Emission Calculations)	
19181	Emergency Generator Engine	CO ₂ e	20.2 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19182	Emergency Generator	Non Methane Hydrocarbons (NMHC)	0.91 lb/hr	See Attachment C	20.11.41 NMAC
19182	Engine	& Oxides of Nitrogen (NOx)	0.092 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19182	Emergency Generator	Carbon Monoxide	1.01 lb/hr	See Attachment C	20.11.41 NMAC
19102	Engine	(CO)	0.10 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19182	Emergency Generator	Sulfur Dioxide	0.36 lb/hr	See Attachment C	20.11.41 NMAC
17102	Engine	(SO ₂ )	0.04 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19182	Emergency Generator	Total Suspended	0.06 lb/hr	See Attachment C	20.11.41 NMAC
19102	Engine Engine	Particulate Matter (TSP)	0.006 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII

	UNCONTROLLED (20.1	., ,	additional sheets if nec	essary)	
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
19182	Emergency Generator	Particulate Matter	0.06 lb/hr	See Attachment C	20.11.41 NMAC
19102	Engine	(PM ₁₀ /PM _{2.5} )	0.006 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19182	Emergency Generator Engine	CO ₂ e	20.2 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
19183	Non-Emergency Generator	Non Methane Hydrocarbons (NMHC)	2.89 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 60, Subpart IIII
19185	Engine	& Oxides of Nitrogen (NOx)	0.72 tn/yr	(Emission Calculations)	
19183	Non-Emergency Generator	Carbon Monoxide	0.58 lb/hr	See Attachment C	20.11.41 NMAC 40 CFR 60, Subpart IIII
	Engine	(CO)	0.14 tn/yr	(Emission Calculations)	
19183	Non-Emergency Generator	Sulfur Dioxide	0.18 lb/hr	See Attachment C	20.11.41 NMAC
	Engine	(SO ₂ )	0.04 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19183	Non-Emergency Generator	Total Suspended Particulate Matter (TSP)	0.19 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC
	Engine	Particulate Matter (TSP)	0.05 tn/yr	(Emission Calculations)	40 CFR 60, Subpart IIII
19183	Non-Emergency Generator Engine	Particulate Matter (PM ₁₀ /PM _{2.5} )	0.19 lb/hr	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 60, Subpart IIII
	Engine	(1 1v1 ₁₀ / F 1v1 _{2.5} )	0.05 tn/yr	(Emission Calculations)	40 CFK 00, Subpart III
19183	Non-Emergency Generator Engine	CO ₂ e	24.8 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC

	UNCONTROLLED (20.1	., ,	additional sheets if nece	ssary)	
UNIT	UNIT EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
20002	T700 Kerosene-fired	Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC
20002	helicopter engine	(CO)	0.46 tn/yr	(Emission Calculations)	20.11.41 NMAC
20002	T700 Kerosene-fired	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.41 NMAC
20002	helicopter engine	(SO ₂ )	0.04 tn/yr	(Emission Calculations)	20.11.41 NMAC
20002	T700 Kerosene-fired	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.41 NMAC
20002	helicopter engine	(VOC)	0.42 tn/yr	(Emission Calculations)	20.11.41 WWAC
20002	T700 Kerosene-fired	Total Suspended	N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC
20002	helicopter engine	Particulate Matter (TSP)	0.07 tn/yr		20.11.11100000
20002	T700 Kerosene-fired	Particulate Matter (PM ₁₀ )	N/A ¹	See Attachment C	20.11.41 NMAC
20002	helicopter engine	(10)	0.07 tn/yr	(Emission Calculations)	201111111111
20002	T700 Kerosene-fired	Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC
	helicopter engine	(PM _{2.5} )	0.07 tn/yr	(Emission Calculations)	
20002	T700 Kerosene-fired	Hazardous Air Pollutants	N/A ¹	See Attachment C	20.11.41 NMAC
	helicopter engine	(HAP)	0.03 tn/yr	(Emission Calculations)	
20002	T700 Kerosene-fired helicopter engine	CO ₂ e	280.0 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC

	UNCONTROLLED (20.1	., ,	additional sheets if neco	essary)	
UNIT	UNIT EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR ESTIMATION	APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}
20004	T400 Kerosene-fired	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC
20004	helicopter engine	(NO _x )	0.23 tn/yr	(Emission Calculations)	20.11.41 NMAC
20004	T400 Kerosene-fired	Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC
20004	helicopter engine	(CO)	0.38 tn/yr	(Emission Calculations)	20.11.41 NMAC
20004	T400 Kerosene-fired	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.41 NMAC
20004	helicopter engine	(SO ₂ )	0.04 tn/yr	(Emission Calculations)	20.11.71 INVIAC
20004	T400 Kerosene-fired	Volatile Organic Compounds	N/A ¹	See Attachment C	20.11.41 NMAC
20004	helicopter engine	(VOC)	0.10 tn/yr	(Emission Calculations)	20.11.41 NMAC
20004	T400 Kerosene-fired	Total Suspended	$N/A^1$	See Attachment C	20.11.41 NMAC
20001	helicopter engine	Particulate Matter (TSP)	0.02 tn/yr	(Emission Calculations)	20.11.11 10.11.00
20004	T400 Kerosene-fired	Particulate Matter (PM ₁₀ )	$N/A^1$	See Attachment C	20.11.41 NMAC
20001	helicopter engine		0.02 tn/yr	(Emission Calculations)	20.11.11 10.11.00
20004	T400 Kerosene-fired	Particulate Matter	$N/A^1$	See Attachment C	20.11.41 NMAC
20001	helicopter engine	(PM _{2.5} )	0.02 tn/yr	(Emission Calculations)	2011.1111002.00
20004	T400 Kerosene-fired	Hazardous Air Pollutants	$N/A^1$	See Attachment C	20.11.41 NMAC
20001	helicopter engine	helicopter engine (HAP)	0.03 tn/yr	(Emission Calculations)	20.11.41 INMAC

UNIT	UNIT EMISSIONS UNITS, PROCESS or		UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		APPLICABLE
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
20004	T400 Kerosene-fired helicopter engine	CO ₂ e	290.7 tn/yr	See Attachment C (Emission Calculations)	20.11.42 NMAC
21004	58 SOW Paint Booth	Oxides of Nitrogen	N/A ¹	See Appendix C	20.11.41 NMAC
21004	58 SOW Paint Booth	(NO _x )	N/A ¹	(Emission Calculations)	20.11.41 NMAC
21004	58 SOW Paint Booth	Carbon Monoxide	N/A ¹	See Appendix C	20.11.41 NMAC
21004	58 50 W Tallit Booti	(CO)	N/A ¹	(Emission Calculations)	20.11.41 NMAC
21004	58 SOW Paint Booth	Sulfur Dioxide	N/A ¹	See Appendix C (Emission Calculations)	20.11.41 NMAC
21004	58 SOW Paint Booth	(SO ₂ )	N/A ¹		20.11.71 100/20
21004	58 SOW Paint Booth	Volatile Organic	36.30 lb/hr	See Appendix C	20.11.41 NMAC
21004	58 SOW Paint Booth	Compounds (VOC)	0.67 tn/yr	(Emission Calculations)	20.11.41 NMAC
21004	58 SOW Paint Booth	Total Suspended	1.28 lb/hr	See Appendix C	20 11 41 NIMA C
21004	58 SOW Paint Booth	Particulate Matter (TSP)	0.032 tn/yr	(Emission Calculations)	20.11.41 NMAC
21004	58 SOW Paint Booth	Particulate Matter	1.28 lb/hr	See Appendix C	20.11.41 NMAC
21004	50 SOW Paint BOOTh	(PM ₁₀ /PM _{2.5} )	0.032 tn/yr	(Emission Calculations)	
21004	21004 58 SOW Paint Booth	Volatile Hazardous Air	N/A ¹	See Appendix C (Emission Calculations)	20.11.41 NMAC
21004		nt Booth Pollutant (VHAP)	0.14 tn/yr		

	×	(Use	additional sheets if nece	essary)	
UNTE	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
21004	58 SOW Paint Booth	Particulate Hazardous Air Pollutants	N/A ¹	See Appendix C	20.11.41 NMAC
21004	58 50 W I ann Doon	(pHAP)	0.004 tn/yr	(Emission Calculations)	20.11.41 NWAC
21004	58 SOW Paint Booth	CO ₂ e	N/A ¹	See Appendix C (Emission Calculations)	20.11.42 NMAC
21015	58 SOW Corrosion Control	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NIMAC
21015	Facility (CCF)	(NO _x )	N/A ¹	(Emission Calculations)	20.11.41 NMAC
21015	58 SOW Corrosion Control	Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC
21015	Facility (CCF)	(CO)	N/A ¹	(Emission Calculations)	20.11.41 NWAC
21015	58 SOW Corrosion Control	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.41 NMAC
21015	Facility (CCF)	(SO ₂ )	N/A ¹	(Emission Calculations)	20.11.111100110
21015	58 SOW Corrosion Control	Volatile Organic Compounds	60.0 lb/hr	See Attachment C	20.11.41 NMAC
21015	Facility (CCF)	(VOC)	0.95 tn/yr	(Emission Calculations)	20.11.71 INVIAC
21015	58 SOW Corrosion Control	Total Suspended	5.16 lb/hr	See Attachment C	20.11.41 NMAC
21013	Facility (CCF)	Particulate Matter (TSP)	0.14 tn/yr	(Emission Calculations)	20.11. IT FUNITE
21015	58 SOW Corrosion Control	Particulate Matter	5.16 lb/hr	See Attachment C	20.11.41 NMAC
21015	21015 Facility (CCF)	Facility (CCF) (PM ₁₀ /PM _{2.5} )	0.14 tn/yr	(Emission Calculations)	

UNIT	UNIT EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
21015	58 SOW Corrosion Control	Particulate Hazardous Air Pollutants	N/A ¹	See Attachment C	20.11.41 NMAC
	Facility (CCF)	(pHAP)	0.12 tn/yr	(Emission Calculations)	
21015	58 SOW Corrosion Control Facility (CCF)	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
22003	Gasoline Storage	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC
22003	Gasonne Storage	(NO _x )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22003	Caralina Starson	Carbon Monoxide	N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart CCCCCC
22003	Gasoline Storage	(CO)	N/A ¹		
22003	Gasoline Storage	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.41 NMAC
22003	Gasonne Storage	(SO ₂ )	$N/A^1$	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22003	Gasoline Storage	Volatile Organic Compounds	2.76 lb/hr	See Attachment C	20.11.41 NMAC
22003	Gasonne Storage	(VOC)	3.78 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22003	Gasoline Storage	Total Suspended	N/A ¹	See Attachment C	20.11.41 NMAC
22005	Gasonne Giorage	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22003	Gasoline Storage	Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC
22003	Gasonine Storage	(PM ₁₀ /PM _{2.5} )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC

	(Use additional sheets if necessary)								
	EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE				
UNIT No. {1}	PROCESS or	ENIISSION	KATES (5)	ESTIMATION	REQUIREMENT(s)				
110. (1)	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	{7}				
22003	Gasoline Storage	CO ₂ e	$N/A^1$	See Attachment C (Emission Calculations)	20.11.42 NMAC				
22004		Oxides of Nitrogen	$N/A^1$	See Attachment C	20.11.41 NMAC				
22004	Gasoline Storage	(NO _x )	$N/A^1$	(Emission Calculations)	40 CFR 63, Subpart CCCCCC				
22004		Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC				
22004	Gasoline Storage	(CO)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC				
22004	Caralina Stanara	Gasoline Storage Sulfur Dioxide (SO ₂ )	N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC 40 CFR 63, Subpart CCCCCC				
22004	Gasonne Storage		N/A ¹						
22004	Gasoline Storage	Volatile Organic Compounds	2.76 lb/hr	See Attachment C	20.11.41 NMAC				
22004	Gasonne Storage	(VOC)	2.90 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC				
22004	Gasoline Storage	Total Suspended	N/A ¹	See Attachment C	20.11.41 NMAC				
22004	Gasonine Storage	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC				
22004	Gasalina Starage	Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC				
22004	22004 Gasoline Storage	(PM ₁₀ /PM _{2.5} )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC				
22004	Gasoline Storage	CO ₂ e	$N/A^1$	See Attachment C (Emission Calculations)	20.11.42 NMAC				

UNIT	UNIT EMISSIONS UNITS, PROCESS or	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE REQUIREMENT(s)
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
22005	Gasoline Storage	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC
22003	Gasonne Storage	(NO _x )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22005	Gasoline Storage	Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC
	Subonne Storage	(CO)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22005	Gasoline Storage	Sulfur Dioxide	$N/A^1$	See Attachment C	20.11.41 NMAC
		(SO ₂ )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22005	Gasoline Storage	volatile Organic Compounds (VOC)	30.70 lb/hr	See Attachment C	20.11.41 NMAC
			2.31 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22005	Gasoline Storage	Total Suspended Particulate Matter (TSP)	N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC
		Particulate Matter (1SP)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22005	Gasoline Storage	Particulate Matter (PM ₁₀ /PM ₂₅ )	N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC
		(1 14110/1 1412.5)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22005	Gasoline Storage	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
22015	E85 Fuel Storage	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart CCCCCC
22015	E65 Fuel Stolage	(NO _x )	N/A ¹	(Emission Calculations)	

UNIT EMISSIONS UNITS, PROCESS or		UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE DEOLIDEMENT(c)
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
22015	E85 Fuel Storage	Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC
22015	E85 Fuel Stolage	(CO)	$N/A^1$	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22015	E85 Fuel Storage	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.41 NMAC
22010	Lot I del Stoluge	(SO ₂ )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22015	E85 Fuel Storage	Volatile Organic Compounds	3.75 lb/hr	See Attachment C	20.11.41 NMAC
		(VOC)	5.70 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22015	E85 Fuel Storage	Total Suspended Particulate Matter (TSP)	$N/A^1$	See Attachment C	20.11.41 NMAC
			N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22015	E85 Fuel Storage	e Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC
		(PM ₁₀ /PM _{2.5} )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
22015	E85 Fuel Storage	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
				(Emission Curculations)	
25012	Gasoline Storage	Oxides of Nitrogen	N/A ¹	See Attachment C (Emission Calculations)	20.11.41 NMAC
		(NO _x )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
25012	Gasoline Storage	Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC
		(CO)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC

UNIT	UNIT EMISSIONS UNITS,	UNCONTROLLED AIR POLLUTANT EMISSION RATES {3}		MEASUREMENT OR	APPLICABLE
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}
25012	Gasoline Storage	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.41 NMAC
25012	Gasonne Storage	(SO ₂ )	$N/A^1$	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
25012	Gasoline Storage	Volatile Organic Compounds	9.96 lb/hr	See Attachment C	20.11.41 NMAC
20012	Custinie Storage	(VOC)	0.58 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
25012	Gasoline Storage	Total Suspended	N/A ¹	See Attachment C	20.11.41 NMAC
	0	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
25012	Gasoline Storage	asoline Storage Particulate Matter (PM ₁₀ /PM _{2.5} )	$N/A^1$	See Attachment C	20.11.41 NMAC
	0		N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
25012	Gasoline Storage	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC
25017	Gasoline Storage	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.41 NMAC
23017	Gasonne Storage	(NO _x )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
25017	Gasoline Storage	Carbon Monoxide	N/A ¹	See Attachment C	20.11.41 NMAC
23017	Gasonine Storage	(CO)	$N/A^1$	(Emission Calculations)	40 CFR 63, Subpart CCCCCC
25017	Gasoline Storage	Sulfur Dioxide	N/A ¹	See Attachment C	20.11.41 NMAC 40 CFR 63, Subpart CCCCCC
23017	Gasonne Storage	(SO ₂ )	N/A ¹	(Emission Calculations)	

	(Use additional sheets if necessary)								
UNIT	EMISSIONS UNITS, PROCESS or	UNCONTROLLED EMISSION		MEASUREMENT OR ESTIMATION	APPLICABLE				
No. {1}	OPERATION {2}	Pollutant {4}	Quantity {5}	METHOD {6}	REQUIREMENT(s) {7}				
25017	Gasoline Storage	Volatile Organic Compounds	12.00 lb/hr	See Attachment C	20.11.41 NMAC				
25017	Gasonne Storage	(VOC)	0.2 tn/yr	(Emission Calculations)	40 CFR 63, Subpart CCCCCC				
25017	Gasoline Storage	Total Suspended	N/A ¹	See Attachment C	20.11.41 NMAC				
	Casonie Storage	Particulate Matter (TSP)	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC				
25017	Gasoline Storage	Particulate Matter	N/A ¹	See Attachment C	20.11.41 NMAC				
		(PM ₁₀ /PM _{2.5} )	N/A ¹	(Emission Calculations)	40 CFR 63, Subpart CCCCCC				
25017	Gasoline Storage	CO ₂ e	N/A ¹	See Attachment C (Emission Calculations)	20.11.42 NMAC				
31999	Basewide Miscellaneous	Oxides of Nitrogen	N/A ¹	See Attachment C	20.11.40 NMAC				
31999	Paint and Chemical Usage	$(NO_x)$	N/A ¹	(Emission Calculations)	20.11.40 NMAC				
31999	Basewide Miscellaneous Carbon Monoxide	N/A ¹	See Attachment C	20.11.40 NMAC					
51777	Paint and Chemical Usage	(CO)	N/A ¹	(Emission Calculations)	20.11.10 100140				
31999	Basewide Miscellaneous		N/A ¹	See Attachment C (Emission Calculations)	20.11.40 NMAC				
51777	Paint and Chemical Usage		N/A ¹						

	(Use additional sheets if necessary)								
UNIT	EMISSIONS UNITS,	UNCONTROLLED EMISSION		MEASUREMENT OR	APPLICABLE				
No. {1}	PROCESS or OPERATION {2}	Pollutant {4}	Quantity {5}	ESTIMATION METHOD {6}	REQUIREMENT(s) {7}				
31999	Basewide Miscellaneous	Volatile Organic Compounds	158 lb/hr	See Attachment C	20.11.40 NMAC				
51777	Paint and Chemical Usage	(VOC)	78.03 tn/yr	(Emission Calculations)	20.11.40 NWAC				
31999	Basewide Miscellaneous	Total Suspended	2.08 lb/hr	See Attachment C (Emission Calculations)	20.11.40 NMAC				
51999	Paint and Chemical Usage	Particulate Matter (TSP)	1.03 tn/yr		20.11.40 NWAC				
31999	Basewide Miscellaneous	Particulate Matter	2.08 lb/hr	See Attachment C	20.11.40 NMAC				
51999	Paint and Chemical Usage	(PM ₁₀ /PM _{2.5} )	1.03 tn/yr	(Emission Calculations)	20.11.70 NWAC				
31999	Basewide Miscellaneous		N/A ¹	See Attachment C	20.11.40 NMAC				
51999	Paint and Chemical Usage		2.93 tn/yr	(Emission Calculations)					

¹ These units do not have permitted emissions listed in their respective permit, emergency permit or source registration,

therefore emission rates were listed as N/A.

### Section 2: Air Pollutant Emissions Rates Prior to Control or Abatement Equipment, or to Atmosphere if Uncontrolled

Each piece of equipment in the facility that emits air pollutants must be listed in this section. Maximum possible emissions rates prior to air pollution control equipment, waste abatement equipment, process control capture equipment, or to the atmosphere for uncontrolled emissions are to be provided in this section. Calculations made to determine the values shown on the form are to be shown and referenced in Package Element 6 (Emissions Calculations).

These emissions include: pollutants for which the source is major; regulated air pollutants; all fugitive emissions; and any hazardous or toxic air contaminants emitted as part of plant processes. If products or raw materials are stored and pollutants are passively released through off gassing while in storage, these pollutants must also be listed. Emissions from flares and wood waste burners should be listed in this section.

#### Notes

- {1} Use the process or operation equipment unit numbers that were assigned to each piece of equipment in Package Element 4A (Process Flow Sheets) above. For fugitive emissions, describe the source of the emissions. For liquid tank and solid material storage, use the tank or storage unit number.
- {2} For example: boiler, catalyst regeneration units, flare, furnace, gas engine, haul road, iron melting cupola, material dryer, process fugitive, silo, smelter furnace, solvent cleaner, storage tanks, etc.
- {3} Use one line for each pollutant emitted by each piece of equipment. Attach additional sheets if required.
- {4} List each pollutant defined by EPA to be a regulated air pollutant that this source emits. Also list all other pollutants for which this source is major. Provide trade name or common name and chemical composition if known. (E.g. particulate matter (describe composition), SQ CO, hydrogen sulfide, nitrogen oxides (as nitrogen dioxide), etc.)
- {5} Maximum allowable quantities at maximum allowable production rates and 8760 hours per year unless limited by federally enforceable permit conditions. See Section 1, Line 37. tn = tons (2,000 lb).
- {6} Specify how the quantity of emitted pollutant was determined: from actual measurement (specify equipment used) of emissions (preferred), process material balances, equipment manufacturer's information, EPA emission factor, or other source. Show the calculations used to obtain the emission rates in Package Element 4B (Emissions Calculations).
- {7} Specify the requirement(s) that is(are) applicable to this process, operation or emission unit. See Part 42 for list of applicable requirements. E.g. 20 NMAC 11.67.II.9; NSPS Subpart GG; 20 NMAC 11.41. If there is insufficient room on the form, please attach a clearly identified additional sheet.

Emission	CC	ONTROL EQU	IPMENT	AIR POL	LUTAN	<b>FS EMIT</b>	TED {4}	CONTROL EFFICIENCY					
Unit			Manufacturer			Quantity	· {6}		Method of	APPLICABLE			
Nos. {1}	Unit No. {2}	Type {3}	and Model No.	Pollutant {5}	Actual	Units	Allowable	% by Weight	Determination {7}	REQUIREMENTS {8}			
12009	12009	Granulated Activated	N/A	VOC	N/A	lb/hr	N/A ¹	50%	Manufacturer's	20.11.41 NMAC			
12009	12007	Carbon	1011		N/A	tn/yr	N/A ¹	2070	Data	Dominin runnie			
12009	12009	Granulated Activated	N/A	HAP	N/A	lb/hr	N/A ¹	50%	Manufacturer's	20.11.41 NMAC			
12007	12007	Carbon	IVIA	IIAI	N/A	tn/yr	N/A ¹	5070	Data	20.11.41 NWIAC			
12010	12010	Thermal	N/A	NOx	N/A	lb/hr	0.17	99%	Manufacturer's	20.11.41 NMAC			
12010	12010	Oxidizer	19/24	NOX	N/A	tn/yr	0.75	<i>))</i> //0	Data	20.11.41 WMAC			
12010	12010	Thermal	N/A	СО	N/A	lb/hr	0.08	0.09/	00%	00%	99%	Manufacturer's	20.11.41 NMAC
12010	12010	Oxidizer	19/24	0	N/A	tn/yr	0.23	9970	Data	20.11.41 NMAC			
12010	12010	Thermal	N/A VOC	N/A	lb/hr	0.28	99%	Manufacturer's	20.11.41 NMAC				
12010	12010	Oxidizer	IVIA	voe	N/A	tn/yr	1.25	<i>))</i> //0	Data	20.11.41 WMAC			
18001	18001	Catalyst ²	TBD	со	TBD	lb/hr	TBD	TPD	TBD	TBD	40 CFR 63.6603 and Table		
10001	10001	Catalyst	IDD	0	TBD	tn/yr	TBD	TBD	TDD	2d			
21004	21004	Dry Filters	N/A	TSP	N/A	lb/hr	1.28	89.76%	Manufacturer's	20.11.41 NMAC			
21001	21001	Diy Theis	1971	151	N/A	tn/yr	0.032	05.7070	Data	20.11.11 10.1110			
21004	21004	Dry Filters	N/A	Total pHAP	N/A	lb/hr	N/A ¹	89.76%	Manufacturer's	20.11.41 NMAC			
21001	21001	Diy Theis	1071	rotur printi	N/A	tn/yr	0.004	05.7070	Data	20.11.11 10.1110			
21015	21015	Dry Filters	N/A	TSP	N/A	lb/hr	5.16	75%	Manufacturer's	20.11.41 NMAC			
21015	21015	Diyrmeis	11/21	101	N/A	tn/yr	0.14	1070	Data	2011111100010			
21015	21015	Dry Filters	N/A	Total pHAP	N/A	lb/hr	N/A ¹	75%	Manufacturer's	20.11.41 NMAC			
21010	21010	21, 1 11013		- sui pri li	N/A	tn/yr	0.12	,,,,,	Data				

SECTION 3 EMISSIONS FROM AIR POLLUTION CONTROL EQUIPMENT AND FROM UNCONTROLLED PROCESS EQUIPMENT (20.11.42.12A(4) NMAC)

¹ These units do not have permitted emissions listed in their respective permit, emergency permit or source registration, therefore emission rates were listed as N/A.

² The landfill mulcher (Unit ID 18001) has been modified to incorporate a catalyst to reduce CO emissions according to 40 CFR 63 Subpart ZZZZ. However, Construction Permit 3048-2TR has not yet been revised to include this information, therefore this section will be updated once the revised construction permit has been issued.

#### Section 3: Emissions From Air Pollution Control Equipment and from Uncontrolled Process Equipment

All emissions to the atmosphere, either controlled or uncontrolled if no control exists, associated with the operation of this facility must be identified in th section. This includes fugitive process emissions, and other fugitive or indirect emissions resulting from activities of this facility, e.g. fugitive dust from hau roads. [Insignificant activities are found in Package Element 9.]

Provide emissions rates from air pollution control equipment, waste abatement equipment, process control capture equipment, and from uncontrolled processes operations or activities. Calculations made to determine the values shown on the form are to be shown and referenced in Package Element 4B (Emission: Calculations). These emissions include: pollutants for which the source is major; regulated air pollutants; and any hazardous or toxic air contaminants emitted a part of plant processes. Emissions from flares, sulfur recovery units, VOC afterburners, and wood waste burners must also be listed.

Sufficient information must be included for the department to evaluate, and verify, the operation and stated control efficiencies of the control equipmen involved. Attach additional sheets as needed to list all control equipment. Include references to process flow sheets required in Package Element 4A and attacl any equipment layout and assembly drawings as necessary to describe all air pollution control equipment

#### Notes:

- {1} List the emission unit numbers that feed each individual piece of control equipment. If multiple process units (with individual numbers) discharge to one control equipment unit, list all emission unit numbers that feed that control equipment unit. For liquid tank and solid material storage, use the tank or storage unit number.
- {2} Corresponding to control equipment unit numbers from Package Element 4.
- {3} Baghouse, cyclone, electrostatic precipitator, enclosures, scrubber, VOC afterburners, etc.
- {4} Emissions after gases have passed through control equipment. Use one line for each pollutant emitted. Attach additional sheets if required
- {5} SO₂, NO_x, particulate matter, etc.
- [6] "Actual" rates are based on actual production and hours of operation. "Allowable" values are based on maximum allowable production rates. If there is no control equipment, the values in the "Allowable" column are the same as the values in the "Quantity" column in Section 2. List quantities in both pounds per hour and tons per year. Yearly values are based on 8760 hours per year unless the applicant desires to restrict hours of operation as a permit condition. If the emission rate is limited by a federally enforceable applicable requirement, then provide the value of this rate
- {7} Field test results, manufacturer's data, etc. See note {6} from Section 2, Air Pollutant Emission Rates.
- {8} Specify the requirement(s) that apply to this control equipment unit and process.

### SECTION 4 COMPLIANCE MONITORING DEVICES AND EQUIPMENT (20.11.42.12A(4) NMAC)

	(Use additional sheets if necessary)								
Unit No. {1}	Pollutant Monitored or Measured	Type of Instrument {2}	Manufacturer and Model Number	Range {3}	Sensitivity	Accuracy	Emission Units {4}	Location of Monitor {5}	
18001	СО	Catalyst 1	TBD	TBD	TBD	TBD	18001	TBD	

¹ The landfill mulcher (Unit ID 18001) has been modified to incorporate a catalyst to reduce CO emissions according to 40 CFR 63 Subpart ZZZZ. However, Construction Permit 3048-2TR has not yet been revised to include this information, therefore this section will be updated once the revised construction permit has been issued.

### Section 4: Compliance Monitoring Devices and Equipment

Use this section to list all compliance monitoring devices and equipment used at the facility to verify emission rates and other permit terms and conditions. Use one line for each monitoring device and piece of equipment.

### Notes:

- {1} List the unit number of the compliance monitoring device as shown in Package Element 4A (Process Flow Sheets).
- {2} State the type of the monitoring device. E.g. Ultra Violet Photometric Analyzer, NDIR Photometer, Opacity Meter, EPA Sampling Train (specify the sampling method number), etc.
- {3} 0- 1,000 ppm, 0 50 g/m3, 0 100% opacity, etc.
- {4} Provide the unit number(s) (from Package Element 4A -- Process Flow Sheets) of the emissions unit(s) being monitored by each device.
- {5} Describe the physical location of the monitoring device and the recording device. E.g. Monitor is located in ductwork 50' upstream from stack. Recorder is located in operating control room.

	(20.11.42.12A(4) NMAC)		(Use additional	sheets if necessary	·)					
				FUEL DATA {4}						
Unit No. {1}	Type of Equipment {2}	Equipment Manufacturer	Rated Capacity {3}	Fuel Type {5}	Amount Per Year {6) ^a	Heating Value (State Units) {7}	Percent Sulfur {8} ^b	Percent Ash {9}		
12010	Soil Vapor Extraction System	Mako	467,000 Btu/hr	Propane	45,203 gal/yr $^{\rm c}$	90,500 Btu/gal	0.0015			
14014	Boiler	Power Flame	6.25 MMBtu/hr	Natural Gas	53.7 <b>x</b> 10 ⁶ scf	1,020 Btu/scf	2,000 gr/10 ⁶ scf (EPA AP-42)			
14166	Boiler	Cleaver Brooks	5.25 MMBtu/hr	Natural Gas	45.1 x $10^6$ scf	1,020 Btu/scf	2,000 gr/10 ⁶ scf (EPA AP-42)			
14167	Boiler	Cleaver Brooks	5.25 MMBtu/hr	Natural Gas	45.1 x $10^6 \text{ scf}$	1,020 Btu/scf	2,000 gr/10 ⁶ scf (EPA AP-42)			
14168	Boiler	Cleaver Brooks	5.23 MMBtu/hr	Natural Gas	44.9 x $10^6$ scf	1,020 Btu/scf	2,000 gr/10 ⁶ scf (EPA AP-42)			
14169	Boiler	Cleaver Brooks	5.23 MMBtu/hr	Natural Gas	44.9 10 ⁶ scf	1,020 Btu/scf	2,000 gr/10 ⁶ scf (EPA AP-42)			
18001	Non-Emergency Landfill Mulcher Engine	Caterpillar	425 hp	Diesel	10,857.7 gal	137,000 Btu/gal	0.0015			
19003	Emergency Generator Engine	Cummins	135 hp	Diesel	1,379.6 gal	137,000 Btu/gal	0.0015			
19006	Emergency Generator Engine	Cummins	102 hp	Diesel	1,042.3 gal	137,000 Btu/gal	0.0015			
19014	Emergency Generator Engine	Cummins	755 hp	Diesel	7,751.3 gal	137,000 Btu/gal	0.0015			
19015	Emergency Generator Engine	Cummins	102 hp	Diesel	1,042.3 gal	137,000 Btu/gal	0.0015			

	(20.11.42.12A(4) NMAC)		(Use additional	sheets if necessary	·)			
			D. (. 1		F	UEL DATA {4}		
Unit No. {1}	Type of Equipment {2}	Equipment Manufacturer	Rated Capacity {3}	Fuel Type {5}	Amount Per Year {6) ^a	Heating Value (State Units) {7}	Percent Sulfur {8} ^b	Percent Ash {9}
19016	Emergency Generator Engine	Onan	40 hp	Diesel	408.8 gal	137,000 Btu/gal	0.0015	
19019	Emergency Generator Engine	Cummins	102 hp	Diesel	1,042.3 gal	137,000 Btu/gal	0.0015	
19028	Emergency Generator Engine	Cummins	355 hp	Diesel	3,627.7 gal	137,000 Btu/gal	0.0015	
19031	Emergency Generator Engine	Cummins	355 hp	Diesel	3,627.7 gal	137,000 Btu/gal	0.0015	
19032	Emergency Generator Engine	Cummins	465 hp	Diesel	4,751.8 gal	137,000 Btu/gal	0.0015	
19069	Emergency Water Pump Engine	Cummins	340 hp	Diesel	3,474.5 gal	137,000 Btu/gal	0.0015	
19070	Emergency Water Pump Engine	Cummins	340 hp	Diesel	3,474.5 gal	137,000 Btu/gal	0.0015	
19071	Emergency Water Pump Engine	Cummins	340 hp	Diesel	3,474.5 gal	137,000 Btu/gal	0.0015	
19072	Emergency Water Pump Engine	Cummins	340 hp	Diesel	3,474.5 gal	137,000 Btu/gal	0.0015	
19073	Emergency Water Pump Engine	Cummins	340 hp	Diesel	3,474.5 gal	137,000 Btu/gal	0.0015	
19074	Emergency Water Pump Engine	Cummins	340 hp	Diesel	3,474.5 gal	137,000 Btu/gal	0.0015	
19075	Emergency Water Pump Engine	Cummins	340 hp	Diesel	3,474.5 gal	137,000 Btu/gal	0.0015	
19076	Emergency Water Pump Engine	Cummins	340 hp	Diesel	3,474.5 gal	137,000 Btu/gal	0.0015	

	(20.11.42.12A(4) NMAC)		(Use additional	sheets if necessary	r)					
			<b>D</b> 1	FUEL DATA {4}						
Unit No. {1}	Type of Equipment {2}	Equipment Manufacturer	Rated Capacity {3}	Fuel Type {5}	Amount Per Year {6) ^a	Heating Value (State Units) {7}	Percent Sulfur {8} ^b	Percent Ash {9}		
19089	Emergency Generator Engine	Cummins	390 hp	Diesel	3,985.4 gal	137,000 Btu/gal	0.0015			
19091	Emergency Generator Engine	Cummins	750 hp	Diesel	7,664.2 gal	137,000 Btu/gal	0.0015			
19093	Emergency Fire Pump Engine	Caterpillar	660 hp	Diesel	6,744.5 gal	137,000 Btu/gal	0.0015			
19096	Emergency Generator Engine	Detroit Diesel	568 hp	Diesel	5,804.4 gal	137,000 Btu/gal	0.0015			
19102	Emergency Fire Pump Engine	Caterpillar	660 hp	Diesel	6,744.5 gal	137,000 Btu/gal	0.0015			
19106	Emergency Generator Engine	Cummins	166 hp	Diesel	1,696.4 gal	137,000 Btu/gal	0.0015			
19129	Emergency Generator Engine	Cummins	207 hp	Diesel	2,115.3 gal	137,000 Btu/gal	0.0015			
19130	Emergency Generator Engine	Caterpillar	1,186 hp	Diesel	12,119.7 gal	137,000 Btu/gal	0.0015			
19131	Emergency Generator Engine	Cummins	170 hp	Diesel	1,737.2 gal	137,000 Btu/gal	0.0015			
19132	Emergency Generator Engine	Cummins	277 hp	Diesel	2,830.7 gal	137,000 Btu/gal	0.0015			
19133	Emergency Generator Engine	Cummins	755 hp	Diesel	7,715.3 gal	137,000 Btu/gal	0.0015			
19134	Emergency Generator Engine	Cummins	435 hp	Diesel	4,445.3 gal	137,000 Btu/gal	0.0015			
19135	Emergency Generator Engine	Cummins	1,334 hp	Natural Gas	2,404,220 scf	1,020 Btu/scf	2,000 gr/10 ⁶ scf (EPA AP-42)			
19140	Emergency Generator Engine	Cummins	102 hp	Diesel	1,042.3 gal	137,000 Btu/gal	0.0015			

	(20.11.42.12A(4) NMAC)		(Use additional	sheets if necessary	·)					
				FUEL DATA {4}						
Unit No. {1}	Type of Equipment {2}	Equipment Manufacturer	Rated Capacity {3}	Fuel Type {5}	Amount Per Year {6) ^a	Heating Value (State Units) {7}	Percent Sulfur {8} ^b	Percent Ash {9}		
19142	Emergency Generator Engine	Cummins	102 hp	Diesel	1,042.3 gal	137,000 Btu/gal	0.0015			
19143	Emergency Generator Engine	Cummins	50 hp	Diesel	510.9 gal	137,000 Btu/gal	0.0015			
19147	Emergency Generator Engine	Cummins	755 hp	Diesel	7,715.3 gal	137,000 Btu/gal	0.0015			
19148	Emergency Generator Engine	Cummins	535 hp	Diesel	5,467.2 gal	137,000 Btu/gal	0.0015			
19151	Emergency Generator Engine	Cummins	99 hp	Diesel	2,529.2 gal	137,000 Btu/gal	0.0015			
19153	Emergency Generator Engine	Cummins	755 hp	Diesel	7,715.3 gal	137,000 Btu/gal	0.0015			
19154	Emergency Generator Engine	Perkins	65.6 hp	Diesel	670.4 gal	137,000 Btu/gal	0.0015			
19155	Emergency Generator Engine	Doosan	752 hp	Diesel	7,684.7 gal	137,000 Btu/gal	0.0015			
19156	Emergency Generator Engine	Doosan	752 hp	Diesel	7,684.7 gal	137,000 Btu/gal	0.0015			
19157	Emergency Generator Engine	Doosan	752 hp	Diesel	7,684.7 gal	137,000 Btu/gal	0.0015			
19158	Emergency Generator Engine	Doosan	752 hp	Diesel	7,684.7 gal	137,000 Btu/gal	0.0015			
19159	Non-Emergency Generator Engine	Caterpillar	762 hp	Diesel	97,335.8 gal	137,000 Btu/gal	0.0015			
19160	Emergency Generator Engine	Caterpillar	94.5 hp	Diesel	965.7 gal	137,000 Btu/gal	0.0015			
19161	Emergency Generator Engine	Isuzu/MQ	348 hp	Diesel	3,556.2 gal	137,000 Btu/gal	0.0015			

	(20.11.42.12A(4) NMAC)		(Use additional	sheets if necessary	·)			
		F	FUEL DATA {4}					
Unit No. {1}	Type of Equipment {2}	Equipment Manufacturer	Rated Capacity {3}	Fuel Type {5}	Amount Per Year {6) ^a	Heating Value (State Units) {7}	Percent Sulfur {8} ^b	Percent Ash {9}
19163	Emergency Generator Engine	Cummins	399 hp	Diesel	4,077.4 gal	137,000 Btu/gal	0.0015	
19164	Emergency Generator Engine	Cummins	250 hp	Diesel	2,554.7 gal	137,000 Btu/gal	0.0015	
19168	Emergency Generator Engine	Onan	25 hp	Diesel	255.5 gal	137,000 Btu/gal	0.0015	
19169	Emergency Generator Engine	Cummins	1,490 hp	Diesel	15,226.3 gal	137,000 Btu/gal	0.0015	
19170	Emergency Generator Engine	Cummins	755 hp	Diesel	7,715.3 gal	137,000 Btu/gal	0.0015	
19171	Emergency Generator Engine	Cummins	755 hp	Diesel	7,715.3 gal	137,000 Btu/gal	0.0015	
19172	Emergency Generator Engine	Cummins	755 hp	Diesel	7,715.3 gal	137,000 Btu/gal	0.0015	
19173	Emergency Generator Engine	Cummins	755 hp	Diesel	7,715.3 gal	137,000 Btu/gal	0.0015	
19174	Emergency Generator Engine	Cummins	1220 hp	Diesel	12,376.8 gal	137,000 Btu/gal	1.0015	
19176	Emergency Generator Engine	Cummins	755 hp	Diesel	7,659.4 gal	137,000 Btu/gal	2.0015	
19177	Emergency Generator Engine	Cummins	755 hp	Diesel	7,659.4 gal	137,000 Btu/gal	3.0015	
19178	Emergency Generator Engine	Cummins	1220 hp	Diesel	12,376.8 gal	137,000 Btu/gal	4.0015	
19179	Emergency Generator Engine	Kohler	74.3 hp	Diesel	753.8 gal	137,000 Btu/gal	5.0015	

	(Use additional sheets if necessary)									
				FUEL DATA {4}						
Unit No. {1}	Type of Equipment {2}	Equipment Manufacturer	Rated Capacity {3}	Fuel Type {5}	Amount Per Year {6) ^a	Heating Value (State Units) {7}	Percent Sulfur {8} ^b	Percent Ash {9}		
19181	Emergency Generator Engine	Cummins	176 hp	Diesel	1,785.5 gal	137,000 Btu/gal	7.0015			
19182	Emergency Generator Engine	Cummins	176 hp	Diesel	1,785.5 gal	137,000 Btu/gal	8.0015			
19183	Non-Emergency Generator Engine	Caterpillar Olympian	86.5	Diesel	2,193.8 gal	137,000 Btu/gal	9.0015			
20002	T700 Kerosene-fired helicopter engine	General Electric	2,000 hp ^d	Jet Fuel	12,985.1 gal ^d	135,000 Btu/gal	0.042			
20004	T700 Kerosene-fired helicopter engine	Pratt & Whitney	1,100 hp ^d	Jet Fuel	13,478.9 gal ^d	135,000 Btu/gal	0.042			

^a Annual fuel usage is estimated based on AP-42 fuel specification data, manufacturer capacity data, and maximum permitted operating data. The annual fuel use is not a permit limit for any of the units listed in this table.

^b Percent for natural gas and propane from AP-42 Section 1.4. Percent for diesel based on ultra low sulfur diesel fuel requirements. Assumed weight percent of sulfur is 0.042 as stated in Table 3-6. Average Sulfur Content Values for Jet Fuel, United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis Air Emissions Inventory Guidance Document for Mobile Sources at Air Force Installations (January 2002, Revised December 2003).

^c The SVE fuel use is based on the maximum amount of propane used in the system for the thermal oxidizer.

^d Jet engine test cell fuel use rates are based on the fuel flow and test patterns presented in the emission estimation spreadsheets submitted with the 484-M3 application. Each hour long test is assumed to proceed according to the following operating mode breakdown: 25% idle, 20% intermediate and 15% military. The density of jet fuel is assumed to be 6.67 lb/gal, per the Air Emissions Factor Guide to Air Force Mobile Sources, AFCEE, December 2009. Potential fuel use is estimated by taking the operating hours limits from the issued air permit, and applying the operating mode breakdown and associated fuel consumption rates for each mode.

#### Section 5: Fuels and Fuel Usage

This section provides information on all the fuel usage for all process equipment at the facility. Flares and waste burners are not listed here unless supplemental fuel is used to sustain combustion. In that case, only the supplemental or auxiliary fuel data is given here.

A material balance for combustion within the plant is required to complete this Section and should be attached to this Section. Show calculations in Package Element 4B.

Only equipment that uses fuel is listed in this section.

#### Notes:

- {1} Corresponding to emissions, process, or operational unit numbers as shown in Package Element 4A (Process Flow Sheets).
- {2} State the type of equipment. E.g. Boiler, diesel engine, furnace, gas engine, gas turbine, oven, space heater, etc.
- {3} Provide the maximum nameplate rate and the normal rate, if these rates are different, e.g. million btu/hr, HP etc. If these rates have been adjusted for altitude, this should be noted on the form. Ask the Division's Engineering staff for derating procedures.
- {4} If auxiliary fuel or different fuel is used "on standby", the data for that fuel must also be provided.
- {5} E.g. Natural gas; LPG; No. 1, 2, 4, or 6 fuel oil; refinery gas; coal; wood; etc.
- {6} Use the following units depending on the fuel type: Million cubic feet of gas; gallons of fuel oil; pounds of LPG; etc. State what units you are using.
- {7} Use the following units depending on the fuel type: Btu/thousand ft3 .or gas, Btu/lb for solid fuel, or Btu/gallon for liquid fuel.
- (8) State both average percentage by weight and maximum percentage by weight. Sulfur content is not required if sweet pipeline quality natural gas is used as the fuel. Specify in "fuel type" that sweet pipeline quality gas is used and state specification under "sulfur". Provide fuel supplier specifications for sulfur content.
- (9) State both average percentage by weight and maximum percentage by weight. Ash content is not required if sweet pipeline quality natural gas is used as the fuel.

## SECTION 6A RAW MATERIALS PROCESSED – Not Applicable (20.11.42.12A(4) NMAC)

Unit No. {1}	Material {2a}	Composition {3}	Condition {4}	Quantity Used {5} (Specify Units)

(Use additional sheets if necessary)

# SECTION 6B MATERIALS PRODUCED – Not Applicable (DO NOT INCLUDE EMISSIONS AND WASTE PRODUCTS LISTED IN SECTIONS 2, 3, & 10) (20.11.42.12A(4)(e)(iv) NMAC)

Unit No. {1}	Material {2a}	Composition {3}	Condition {4}	Production Rates {5} (Specify Units)

### Sections 6A and 6B: Raw Materials Processed and Materials Produced

This section addresses any feedstocks or raw materials used in the plant process, and materials or products (not including solid or liquid waste products) that are generated. As an example, sour natural gas is the raw material and sweet pipeline quality gas and natural gas liquids are the products. This section quantifies a portion of the facility material balance. Some unit numbers will correspond to process equipment, as for example where a stream is "refined", such as sour gas to sweet gas, or rock crushing with rock aggregate feed and various products are produced in stages (crushers, screens).

Calculations made to determine the values shown on the form are to be shown and referenced in Package Element 4B (Emissions Calculations).

Notes: (These apply to both 6A and 6B)

- {1} Corresponding to emissions, process or operational unit numbers as shown in Package Element 4A (Process Flow Sheets).
- {2a} What is the raw material -- for example: crude oil, sour gas, raw ore.
- {2b} What is the finished product -- for example: gasoline, diesel fuel, sweet gas.
- {3} List each major component with weight percentages and chemical compositions (if known), or attach separate analysis sheet.
- {4} Provide typical particle size distribution for aggregates, pumice dust, etc. and average moisture content if known.
- {5} Barrels per day, thousands of standard cubic feet per day, tons per hour, etc. Reference process flow sheets required in Package Element 4A, including material balances.

Stack No.	Emission	Stack	Inside Stack Exit	EXIT G	AS CONDITIO	NS {5}	SA	AMPLING PO	ORTS
{1)	Unit Nos. {2}	Height ft. {3}	Diameter ft. {4}	Temp. EF	Velocity ft/sec {6}	Moisture % by Vol	Number	Size	Location {7}
12010	12010	13	1.25	1400-2000	25.00	NA	NA	NA	NA
14014	14014	18	2.0	180	7.08	N/A	N/A	N/A	N/A
14166	14166	52.5	2.0	180	5.95	N/A	N/A	N/A	N/A
14167	14167	52.5	2.0	180	5.95	N/A	N/A	N/A	N/A
14168	14168	52.5	2.0	180	5.92	N/A	N/A	N/A	N/A
14169	14169	52.5	2.0	180	5.92	N/A	N/A	N/A	N/A
18001	18001	13.42	0.50	755	213.33	N/A	N/A	N/A	N/A
18002	18002	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
19003	19003	10	0.25	1070	203.82	N/A	N/A	N/A	N/A
19006	19006	12	0.25	1045	150.49	N/A	N/A	N/A	N/A
19014	19014	14	1*	756	314.82	N/A	N/A	N/A	N/A
19015	19015	10	0.5	1045	37.62	N/A	N/A	N/A	N/A
19016	19016	8	0.5	1009	19.11	N/A	N/A	N/A	N/A

Stack No.	Emission	Stack	Inside Stack Exit	EXIT G	AS CONDITIO	NS {5}	SA	AMPLING PO	ORTS
{1)	Unit Nos. {2}	Height ft. {3}	Diameter ft. {4}	Temp. EF	Velocity ft/sec {6}	Moisture % by Vol	Number	Size	Location {7}
19019	19019	12	0.5	1045	37.71	N/A	N/A	N/A	N/A
19028	19028	15	0.5	675	159.15	N/A	N/A	N/A	N/A
19031	19031	22.5	0.5	675	124.10	N/A	N/A	N/A	N/A
19032	19032	10	0.83	756	77.02	N/A	N/A	N/A	N/A
19037	19037	17.7	0.75	756	94.21	N/A	N/A	N/A	N/A
19069	19069	13	0.42	756	286.21	N/A	N/A	N/A	N/A
19070	19070	13	0.42	756	286.21	N/A	N/A	N/A	N/A
19071	19071	13	0.42	756	286.21	N/A	N/A	N/A	N/A
19072	19072	13	0.42	756	286.21	N/A	N/A	N/A	N/A
19073	19073	26.5	0.67	756	112.47	N/A	N/A	N/A	N/A
19074	19074	26.5	0.67	756	112.47	N/A	N/A	N/A	N/A
19075	19075	26.5	0.67	756	112.47	N/A	N/A	N/A	N/A
19076	19076	26.5	0.67	756	112.47	N/A	N/A	N/A	N/A

Stack No.	Emission	Stack	Inside Stack Exit	EXIT G	AS CONDITIO	NS {5}	SA	AMPLING PO	ORTS
{1)	Unit Nos. {2}	Height ft. {3}	Diameter ft. {4}	Temp. EF	Velocity ft/sec {6}	Moisture % by Vol	Number	Size	Location {7}
19089	19089	7.84	0.67	756	118.24	N/A	N/A	N/A	N/A
19091	19091	19	0.5	756	118.81	N/A	N/A	N/A	N/A
19093	19093	19	0.92	955	98.05	N/A	N/A	N/A	N/A
19096	19096	12	0.67	705	156.55	N/A	N/A	N/A	N/A
19102	19102	19	0.92	955	98.05	N/A	N/A	N/A	N/A
19106	19106	28	0.21	815	324.97	N/A	N/A	N/A	N/A
19129	19129	6.42	0.42	950	108.08	N/A	N/A	N/A	N/A
19130	19130	10	0.83	965	213.36	N/A	N/A	N/A	N/A
19131	19131	7	0.25	1060	271.76	N/A	N/A	N/A	N/A
19132	19132	7.67	0.42	1008	156.47	N/A	N/A	N/A	N/A
19133	19133	10.7	0.42	898	442.08	N/A	N/A	N/A	N/A
19134	19134	9.54	0.5	975	203.82	N/A	N/A	N/A	N/A
19135	19135	14.5	1	1160	220.59	N/A	N/A	N/A	N/A

Stack No.	Emission	Stack	Inside Stack Exit	EXIT G	AS CONDITIO	NS {5}	SA	AMPLING PO	ORTS
{1)	Unit Nos. {2}	Height ft. {3}	Diameter ft. {4}	Temp. EF	Velocity ft/sec {6}	Moisture % by Vol	Number	Size	Location {7}
19140	19140	8	0.25	1045	150.83	N/A	N/A	N/A	N/A
19142	19142	10	0.25	1045	150.83	N/A	N/A	N/A	N/A
19143	19143	10	0.33	1009	44.45	N/A	N/A	N/A	N/A
19147	19147	10.3	0.42	939	474.82	N/A	N/A	N/A	N/A
19148	19148	9.59	0.5	980	270.91	N/A	N/A	N/A	N/A
19151	19151	7.25	0.25	873	184.46	N/A	N/A	N/A	N/A
19153	19153	9.7	0.5	900	307.86	N/A	N/A	N/A	N/A
19154	19054	9.9	0.29	1164	85.33	N/A	N/A	N/A	N/A
19155	19155	11.6	0.5	1300	454.95	N/A	N/A	N/A	N/A
19156	19156	11.6	0.5	1300	454.95	N/A	N/A	N/A	N/A
19157	19157	11.6	0.5	1300	454.95	N/A	N/A	N/A	N/A
19158	19158	11.6	0.5	1300	454.95	N/A	N/A	N/A	N/A
19159	19159	7.8	0.67	951.6	172.87	N/A	N/A	N/A	N/A

Stack No.	Emission	Stack	Inside Stack Exit	EXIT G	AS CONDITIO	NS {5}	SA	AMPLING PO	ORTS
{1)	Unit Nos. {2}	Height ft. {3}	Diameter ft. {4}	Temp. EF	Velocity ft/sec {6}	Moisture % by Vol	Number	Size	Location {7}
19160	19160	7	0.5	1108	41.37	N/A	N/A	N/A	N/A
19161	19161	8	0.375	1004	190.38	N/A	N/A	N/A	N/A
19163	19163	9.4	0.48	941	173.52	N/A	N/A	N/A	N/A
19164	19164	8.5	0.33	785	167.28	N/A	N/A	N/A	N/A
19168	19168	10.5	0.25	Unknown	Unknown	N/A	N/A	N/A	N/A
19169	19169	16	1.17	813	163.94	N/A	N/A	N/A	N/A
19170	19170	24	0.67	865	147.09	N/A	N/A	N/A	N/A
19171	19171	24	0.67	865	147.09	N/A	N/A	N/A	N/A
19172	19172	24	0.67	865	147.09	N/A	N/A	N/A	N/A
19173	19173	24	0.67	865	147.09	N/A	N/A	N/A	N/A
19174	19174	12	0.833	888	164.77	N/A	N/A	N/A	N/A
19176	19176	8	0.33	865	606.33	N/A	N/A	N/A	N/A
19177	19177	8	0.33	865	606.33	N/A	N/A	N/A	N/A

	(20.11.42.12A			(Use ad	ditional sheets if ne	ecessary)			
Stack No.	Emission	Stack	Inside Stack Exit	EXIT G	AS CONDITIO	NS {5}	SA	AMPLING PO	ORTS
{1)	Unit Nos. {2}	Height ft. {3}	Diameter ft. {4}	Temp. EF	Velocity ft/sec {6}	Moisture % by Vol	Number	Size	Location {7}
19178	19178	12	0.83	709	165.13	N/A	N/A	N/A	N/A
19179	19179	8	0.21	824	161.28	N/A	N/A	N/A	N/A
19181	19181	7	0.17	622	447.4	N/A	N/A	N/A	N/A
19182	19182	7	0.17	697	511.32	N/A	N/A	N/A	N/A
19183	19183	4.5	0.33	806	88.90	N/A	N/A	N/A	N/A
20002	20002	4.0	3.0	1038	50.52	N/A	N/A	N/A	N/A
20004	20004	4.0	3.0	1099	39.37	N/A	N/A	N/A	N/A
21004	21004	22.00	2.50	Ambient ^b	13.12	N/A	N/A	N/A	N/A
21006	21006	40	4.7	Ambient	213.33	N/A	N/A	N/A	N/A
21015	21015	49.54	4.59	Ambient	67.26	N/A	N/A	N/A	N/A

^a The emissions point for Unit ID 19014 is not a round stack but rather a 12 ft by 12 ft square brick enclosure, the area of this enclosure was used in the calculation.

b The paint booth exhausts at approximately ambient temperature, but has zero entered in the application.

#### Section 7: Stack Parameters

This section is used to describe the release points of all emissions associated with the facility. This includes actual stacks as well as the release point information in cases where there is no stack, such as where fugitive releases occur.

This information is required for EPA's Aerometric Information Retrieval System database and also for air dispersion modeling that may be required for either this source or another source.

### Notes:

- {1} Use stack numbers from Package Element 4A (Process Flow Sheets). If there is a release point with no stack, state the location of the release point.
- {2} If one stack serves multiple processes, operations, or emissions units, provide unit numbers for all emissions units discharging to this stack.
- {3} Height above ground of the stack exit or release point.
- {4} If stack is circular, give inside diameter at exit point. If stack is not circular, provide actual exit dimensions. If stack exit is not pointed up, give direction that stack points. State whether rain cap is used.
- {5} If conditions are not measured at actual stack exit, specify location at which measurements are made.
- {6} Show calculations in sufficient detail to allow permit engineer to verify actual velocity values. These calculations should be shown in Package Element 4B and clearly identified.
- {7} Provide the physical location(s) of the sampling ports. For example: 2 ports at 90 degrees, 25 ft. from top of stack.

	(20.11.42.12/1(4) 100/140	,		(Use additional sh	eets if necessary	)		
Tank No. {1}	Material Name {2}	Composition {3}	Liquid Density ^a (lb/gal)	Vapor Molecular Weight (lb/lb-mol)	Average Storage Temp., T _{av} (EF)	True Vapor Pressure at T _{av} (psia)	Maximum Storage Temp., T _{max} (EF)	True Vapor Pressure at T _{max} (psia)
22003	Gasoline	Gasoline	5.6	62	58.54	6.7593	65.66	7.7134
22004	Gasoline	Gasoline	5.6	62	58.54	6.7593	65.66	7.7134
22005	Gasoline	Gasoline	5.6	62	58.54	6.7593	65.66	7.7134
22015	E85	E85	6.008	68	58.54	7.9326	65.66	9.0274
25012	Gasoline	Gasoline	5.6	62	58.54	6.7593	65.66	7.7134
25017	Gasoline	Gasoline	5.6	62	58.54	6.7593	65.66	7.7134

# SECTION 8A LIQUID STORAGE TANKS - MATERIAL DATA (20.11.42.12A(4) NMAC)

^a Liquid Density for gasoline is from AP-42 7.1-2. The Liquid Density for E85 was calculated in APIMS using the specific gravity in the MSDS provided for E85 in the Application for Permit 3090.

^b Substitution of equipment for emission unit 22005 occurred in November 2018. A 5,000-gallon tank was substituted for the permitted 10,000-gallon tank.

### Section 8A: Liquid Storage Tanks - Material Data

This section is used to describe any liquid materials that are stored at the plant and are potential sources of gaseous emissions. This includes raw feedstocks, and intermediate and final product storage.

If your plant has no tanks which store volatile organic compounds, or other toxic or hazardous materials, write "NA" on the top of the form.

This information is requested for the calculation and characterization of fugitive emissions. EPA's reference AP-42 Section 12 lists reference data for liquid storage tanks.

The emissions data for the tanks should be provided in Sections 2 and 3 of this application form.

### Notes:

- {1} The tank numbers are to be assigned by the applicant. Use a unique tank number for each tank. These are the same numbers as are used in Package Element 4A (Process Flow Sheets) to identify each tank.
- {2} Give the trade name or commonly used name for the liquid stored in the tanks. E.g. Stoddard Solvent, fuel oil, etc.
- {3} Identify each major component (including sulfur) and give its weight percent. If space is insufficient, attach analysis sheet. The material name and tank number should be clearly identified on any attachments.

	(_0)11112112	<i>a</i> (4) ((1)(1)(2)				(Use additio	nal sheets if nec	cessary)			
Tank No. {1}	Date Installed/ Modified {2}	Material(s) Stored {3}	Roof Type {4}	Seal Type {5}	Capacity (gal)	Diameter (ft)	Vapor Space Height (ft) {6}	Roof/ Shell Color {7}	Paint Cond. {8}	Annual Throughput (gal/yr) {9}	Turnovers per Year {10}
22003	1995	Gasoline	FX	N/A	10,000	8	4	WH	Good	510,000	51
22004	1995	Gasoline	FX	N/A	10,000	8	4	WH	Good	210,000	21
22005 ^a	1964	Gasoline	FX	N/A	5,000	8	4	WH	Good	90,000	18
22015	04-2008	E85	FX	N/A	10,000	8	4	WH	Good	510,000	51
25012	1997	Gasoline	FX	N/A	3,000	5.5	2.75	WH	Good	140,000	46.7
25017	10-2002	Gasoline	FX	N/A	1,000	4.5	2.25	WH	Good	20,000	20

# SECTION 8B LIQUID STORAGE TANKS - TANK DATA (20.11.42.12A(4) NMAC)

^a Substitution of equipment for emission unit 22005 occurred in November 2018. A 5,000-gallon tank was substituted for the permitted 10,000-gallon tank.

#### Section 8B: Liquid Storage Tanks - Tank Data

#### Notes:

- {1} Use tank number(s) from Section 8A.
- {2} Date (mo./yr.) tank was originally installed or constructed. If the tank was later modified or reconstructed, provide the date this work was completed and attach a separate description of the modifications or reconstruction.
- If the tank is used to store more than one material, use a separate line for each material and provide all the requested data for each material. {3}
- {4} Use the following abbreviations: Fixed roof - FX, Internal Floating Roof - IF, External Floating Roof - EF, Pressure - P.
- Select the appropriate number and letter from the following list that describes the tank and seal type (e.g. "2b" indicates welded tank, liquid mounted {5} NOTE: For pressure tanks, enter control pressure (psia). resilient seal with weather shield): NOTE: For pressure tanks, enter control pressure (psia).

### WELDED TANK SEALS

- 1. Mechanical shoe 2. Liquid mounted resilient 3. Vapor mounted resilient

  - a. Primary only a. Primary only a. Primary only b. Shoe mounted secondary b. Weather shield b. Weather shield
  - c. Rim mounted secondary c. Rim mounted secondary c. Rim mounted secondary

### RIVETED TANK

- 4. Mechanical shoe seal
  - a. Primary only
    - b. Shoe mounted secondary
    - c. Rim mounted secondary
- This applies to fixed roof tanks only. Give the average distance from liquid surface to tank roof. For all other tanks, write "N.A." {6}
- Use the following abbreviations: White WH, Aluminum (specular) AS, Aluminum (diffuse) AD, Light Gray LG, Medium Gray MG, Black BL, {7} Other - OT.
- Describe the condition of the paint on the tank as either: Good or Poor. {8}
- Enter throughput, in gallons/year, of each material that is stored in the tank. **{9}**
- {10} Turnover = annual throughput (gal) / tank capacity (gal).

# SECTION 9A SOLID MATERIAL STORAGE - MATERIAL DATA – Not Applicable (20.11.42.12A(4) NMAC)

Storage Unit No. {1}	Material Name	Emissions Unit, Process or Operation Served {2}	Storage Type {3}	Composition {4}	Date Installed or Modified (Mo./Yr)

(Use additional sheets if necessary)

103 of 108

#### Section 9A: Solid Material Storage - Material Data

This section is used to describe any solid stored materials used in the plant process which are potential sources of particulate matter. This includes raw feedstocks, intermediate and final product storage. If there is no solid material storage at the plant, write "NA" at the top of the form.

Emissions data for solid material that is stored on the plant site should be provided in Sections 2 and 3.

#### Notes:

- {1} Individual storage unit numbers are assigned by the applicant in Package Element 4A (Process Flow Sheets). These same unit numbers are used in this Section and in Sections 2 and 3 to identify the storage units.
- {2} State which process, operation or emissions unit is served and whether transfer equipment is used. E.g. open feed conveyor.
- {3} Examples of storage type: silo, open pile, shed, enclosed building, enclosed weigh bin or surge bin.
- {4} Give the chemical composition of the material being stored. If space is insufficient, attach analysis sheet. The material name and storage unit number should be identified clearly in any attachments.

# SECTION 9B SOLID MATERIAL STORAGE - STORAGE DATA – Not Applicable (20.11.42.12A(4) NMAC)

Storage	Transfer or Transpo	ort Method {2}	Maximum Hourly	Annual	Dust Control Method (Storage
Unit No. {1}	Incoming	Outgoing	Throughput (specify units)	Throughput (specify units)	or Transfer) {3}

### Section 9B: Solid Material Storage - Storage Data

This section is used to specify the amounts and methods of solid material transfer in the facility process or operation.

### Notes:

- {1} Use the same storage unit numbers as in Section 9A.
- Examples of transfer or transport method: Incoming: how material is loaded into the storage unit, e.g. truck, rail car, front end loader, etc.

Outgoing: how material is moved from the storage area to the process area, e.g. closed pneumatic feed, closed gravity feed, open gravity feed, enclosed screw conveyor, front end loader, open or enclosed belt conveyor, truck.

{3} State what kind of dust control methods are used in the storage or transfer of material. E.g. silo bin filters, telescoping stacker chutes, enclosures, dust pickup to baghouse, etc. If the storage unit is equipped with a stack, provide the stack parameters in Section 7 (Stack Parameters)

# SECTION 10 WASTE PRODUCT DISPOSAL – Not Applicable (SOLID AND LIQUID WASTES THAT DO NOT RESULT IN AIR EMISSIONS) (20.11.42.12A(4) NMAC)

Equipment	WASTE N	<b>IATERIAL</b>	METHOD OF DISPOSAL
Unit No. {1}	Type {2}	Amount {3}	{4}
		/hr	
		/yr	
		/hr	
		/yr	
		/hr	
		/yr	
		/hr	
		/yr	
		/hr	
		/yr	
		/hr	
		/yr	
		/hr	
		/yr	
		/hr	
		/yr /hr	
		/yr	
		/hr	
		/yr	

(Use additional sheets if necessary)

107 of 108

### Section 10: Waste Product Disposal

Use this section to describe solid and liquid waste product disposal. Any waste product disposal that results in emissions of air pollutants, such as flares or wood waste burners, should be listed and characterized in Sections 2 and 3 of this application form.

This form is designed to complete the material and mass balances of the applicant's operation. It is not part of the air emissions characterization.

### Be aware that incineration of waste materials is regulated and 20 NMAC 11.68 or 11.69 may apply.

### Notes:

- {1} Give the control equipment or process unit numbers from Sections 2 through 9 that produce solid or liquid waste products which are then disposed of.
- {2} For example: Waste paper, wood chips, rubbish, garbage, acids, oils, fly ash, tailings, sulfur, etc.
- {3} Provide the quantity of waste product generated in terms of pounds, tons, or gallons per hour and per year. Specify units used.
- {4} For example: Sanitary landfill, waste pickup, sewage treatment plant, etc.

# SECTION 11 CERTIFICATION -- (20.11.42.12A.(5) NMAC)

I, <u>Jason F. Vattioni, Colonel, USAF</u>, hereby certify that the information and data submitted in this application package are as complete, true and accurate as possible, to the best of my personal knowledge and professional expertise and experience.

Signed this 20TH day of JANUARY, 20 22, upon my oath of affirmation,

before a notary of the State of New Mexico

SIGNATURE (Responsible Official) JASON F. VATTIONI. Colonel, USAF PRINTED NAME

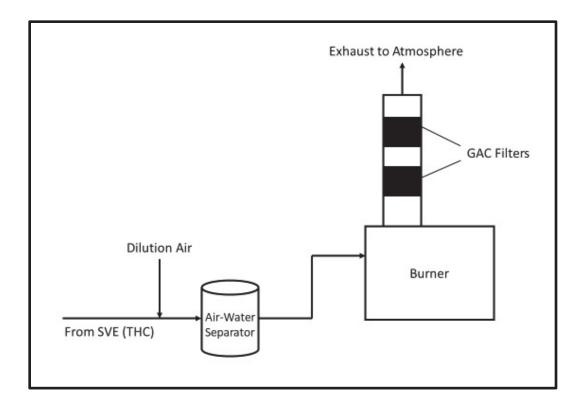
20 JANUARY 2022 DATE

Commander, 377th Air Base Wing TITLE

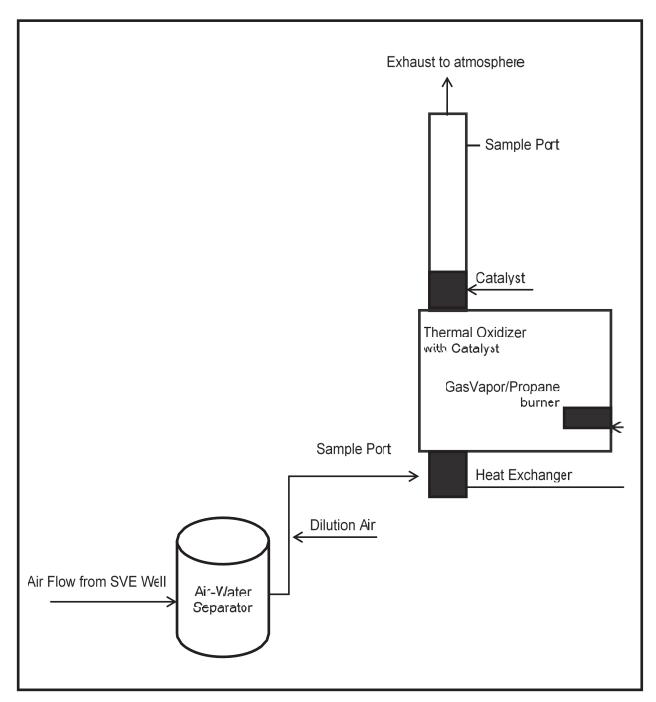
Subscribed and sworn to before me on this 20th day of January, 20 22.

My authorization as a Notary of the State of <u>NM</u> expires on the <u>N/A</u> day of  $20m_{\odot}$  . N/A USC 10 Src 1044a

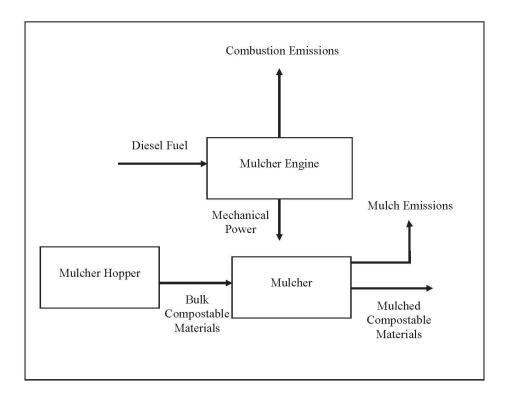
NOTARY'S SIGNATURE


20 January 2022

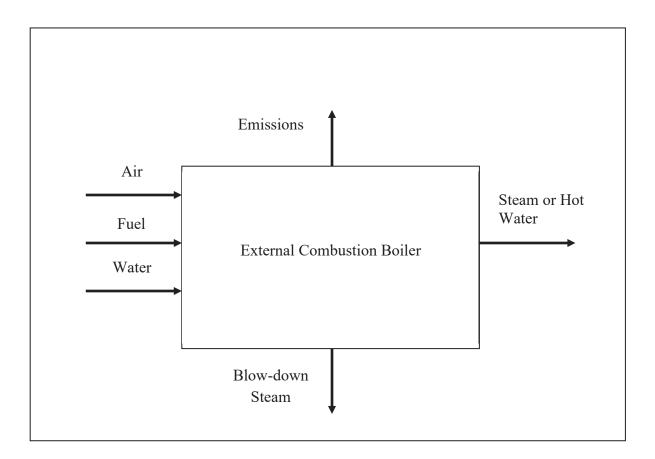
DATE


Melinda Quick, GS-9, USAF NOTARY'S PRINTED NAME

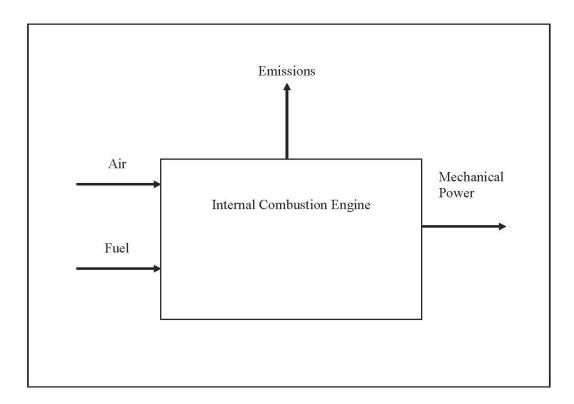
apminun


# Attachment B Process Flow Sheets

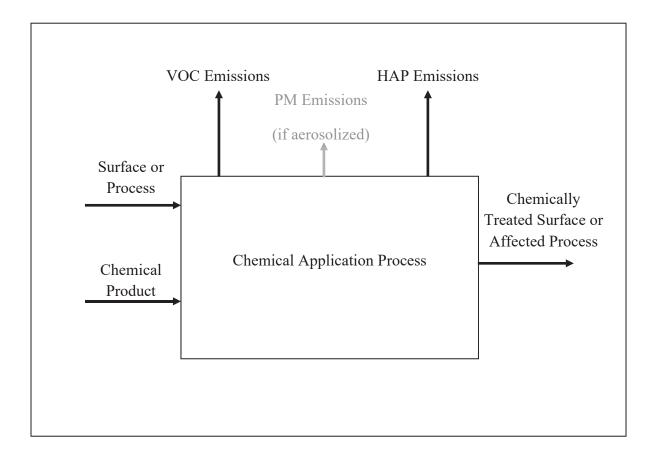



# Process Flow Diagram for Soil Vapor Extraction with GAC filters

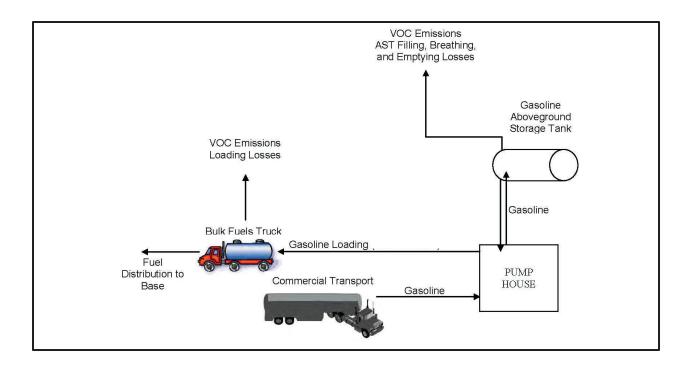



Process Flow Diagram for SVE System with Thermal Oxidizer and Catalyst

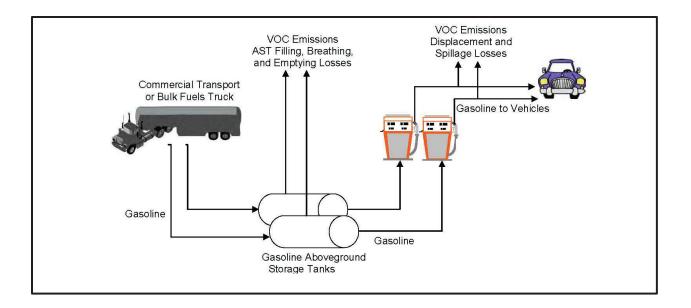



Process Flow Diagram for the Landfill Mulcher

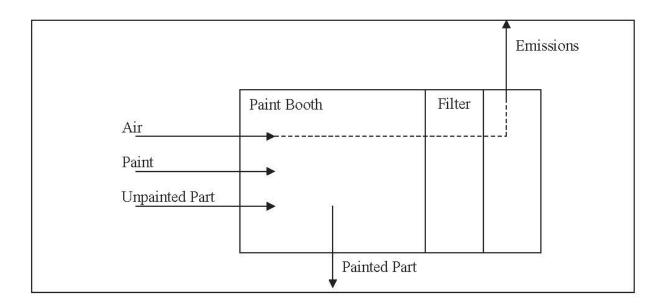



**Process Flow Diagram for a Boiler** 




Process Flow Diagram for an Internal Combustion Engine




# Process Flow Diagram for Miscellaneous Paint and Chemical Use



Process Flow Diagram for Storage Tank and Fuel Loading Operation



Process Flow Diagram for Storage Tank and Fuel Dispensing Operation



**Process Flow Diagram for Surface Coating Operations** 

# Attachment C Emission Calculation Spreadsheets

# **Emission Estimates**

Permit 484-M3 – 58 SOW Test Cells

Emission Unit IDs

20002, 20004

### Allowable Criteria Pollutant Emissions from Aircraft Engine Testing at the 58 SOW at Kirtland AFB

CRITERIA		<b>Emission Facto</b>	r ¹	Duration ²				Number		Annual ⁵
	Idle	Intermed.	Military	Idle	Intermed.	Military	Emiss	ions ³	of Hours	Emissions
	(lb/hr)			(%)			(lb/hr)	(g/s)	per Year ⁴	(tons/yr)
Carbon Monoxide	6.19	2.40	2.20	41.7	33.3	25.0	3.93	0.495	235	0.46
Nitrogen Oxides	0.45	5.14	7.43	41.7	33.3	25.0	3.76	0.474	235	0.44
Particulate Matter ^{6,7}	0.20	0.59	1.39	41.7	33.3	25.0	0.63	0.079	235	0.074
Particulate Matter <10µm	0.20	0.59	1.39	41.7	33.3	25.0	0.63	0.079	235	0.074
Particulate Matter <2.5µm	0.20	0.59	1.39	41.7	33.3	25.0	0.63	0.079	235	0.074
Sulfur Oxides	0.11	0.39	0.53	41.7	33.3	25.0	0.31	0.039	235	0.036
Volatile Organic Compounds	8.24	0.1	0.35	41.7	33.3	25.0	3.55	0.448	235	0.42

T400 Test Cell		Emission Facto	r ¹	Duration ²					Number	Annual ⁵
CRITERIA	Idle	Intermed.	Military	Idle	Intermed.	Military	Emiss	sions ³	of Hours	Emissions
		(lb/hr)		(%)			(lb/hr)	(g/s)	per Year ⁴	(tons/yr)
Carbon Monoxide	4.39	0.75	0.31	41.7	33.3	25.0	2.16	0.272	350	0.38
Nitrogen Oxides	0.44	1.39	2.75	41.7	33.3	25.0	1.33	0.168	350	0.23
Particulate Matter ^{6,7}	0.06	0.10	0.10	41.7	33.3	25.0	0.08	0.011	350	0.015
Particulate Matter <10µm	0.06	0.10	0.10	41.7	33.3	25.0	0.08	0.011	350	0.015
Particulate Matter <2.5µm	0.06	0.10	0.10	41.7	33.3	25.0	0.08	0.011	350	0.015
Sulfur Oxides	0.12	0.24	0.35	41.7	33.3	25.0	0.22	0.027	350	0.038
Volatile Organic Compounds	1.24	0.05	0.05	41.7	33.3	25.0	0.55	0.069	350	0.10

¹ The emission factors for the T700 (carbon monoxide, nitrogen oxides, and volatile organic compounds) were obtained from the United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis Aircraft Engine and Auxiliary Power Unit Emissions Testing Report, Volume 1, Executive Summary (March 1999) (Report No. IERA-RS-BR-TR-1999-0006). Particulate emission factors for the T700 were obtained from the above-referenced report in Volume 3, Particulate Matter Results (Report No. IERA-RS-BR-TR-1999-0006-Vol.3) The emission factors for the T400 were obtained from the Aircraft Environmental Support Office Naval Aviation Depol Summary Tables of Gaseous and Particulate Emissions from Aircraft Engines, June 1990 (AESO Report No. 6-90). Particulate emissions from the T400 were oblained from the 1978 EPA document Air Pollutant Emission Factors for Military and Civil Aircraft (EPA-450/3-78-117).

SO_x emission factors were calculated based on the published fuel flow for each engine in each mode and the average weight percent of sulfur in JP-8 as referenced below (also see Table D-6). The following equalion was used to calculate the SO_x emission factors

Sulfur Oxide Emission Factor (lb/hr) = Sulfur wt% / 100 * Fuel Flow Rate by Mode (lb/hr) * 2 (Conversion of 2 lbs of sulfur dioxide for every lb of sulfur)

Assumed weight percent of sulfur is 0.042 as stated in Table 3-6. Average Sulfur Content Values for JP-8 Fuel, United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis Air Emissions Inventory Guidance Document for Mobile Sources at Air Force Installations (January 2002, Revised December 2003) (Report No. IERA-RS-BR-SR-2001-0010).

Fuel flow rates for the T700 were obtained from the United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis Aircraft Engine and Auxiliary Power Unit Emissions Tesling Report, Volume 1, Executive Summary (March 1999) (Report No. IERA-RS-BR-TR-1999-0006).

Fuel flow rates for the T400 were obtained from the Aircraft Environmental Support Office Naval Aviation Depot Summary Tables of Gaseous and Particulate Emissions from Aircraft Engines, June 1990 (AESO Report No. 6-90).

- ² The following equalion was used to calculate the duration of time spent in each mode: Duration (%) = TIM, (min) / TTT (min)
  - where:
    - TIM, = time in mode; TTT = total test time

³ Pound per hour (lb/hr) and gram per second (g/s) emissions were determined by multiplying the mode duration % by the mode emission factor.

⁴Number of Hours Per Year requested by Kirtland AFB.

⁵ The following equation was used to calculate annual emissions for all pollutants. Emissions (ton/yr) = (2 (EF; (lb/hr)) * (Duration (%) / 100)) * (Number of Hours per Year) / (2000 (lbs/ton))

where

EF₁ = Emission Factor

⁶ Data is total particulate.

⁷ Assumed PM emissions equal PM10 emissions and PM2.5 emissions

### Table D-2

### Allowable VOC HAP Emissions from Aircraft Engine Testing at the 58 SOW at Kirtland AFB

	E	Emission Factor ¹			Duration ²				Number	Annual ⁴
	Idle	Intermed.	Military	Idle	Intermed.	Military	Emis	sions	of Hours	Emissions
HAP		(lb/hr)				(%)			per Year ³	(tons/yr)
1,3-Butadiene				41.7	33.3	25.0	0.00E+00	0.00E+00	235	0.00E+00
Acetaldehyde	2.42E-03	1.42E-04	1.42E-04	41.7	33.3	25.0	1.09E-03	1.37E-04	235	1.28E-04
Acrolein	9.69E-04	4.54E-05	4.54E-05	41.7	33,3	25.0	4.30E-04	5.42E-05	235	5.06E-05
Benzene	6.52E-03	1.39E-04	1.96E-04	41.7	33.3	25.0	2.81E-03	3.54E-04	235	3.30E-04
Ethylbenzene	3.01E-04	2.19E-04	0.00E+00	41.7	33.3	25.0	1.98E-04	2.50E-05	235	2.33E-05
Formaldehyde	2.94E-02	1.92E-03	1.92E-03	41.7	33.3	25.0	1.34E-02	1.68E-03	235	1.57E-03
Naphthalene	9.82E-04	7.32E-05	4.21E-05	41.7	33.3	25.0	4.44E-04	5.60E-05	235	5.22E-05
Phenol				41.7	33,3	25.0	0.00E+00	0.00E+00	235	0.00E+00
Propionaldehyde				41.7	33.3	25.0	0.00E+00	0.00E+00	235	0.00E+00
Styrene	6.92E-04	0.00E+00	0.00E+00	41.7	33.3	25.0	2.88E-04	3.63E-05	235	3.39E-05
Toluene	1.71E-03	1.57E-04	0.00E+00	41.7	33.3	25.0	7.65E-04	9.64E-05	235	8.99E-05
m,p-Xylene	5.83E-04	1.49E-04	2.02E-04	41.7	33.3	25.0	3.43E-04	4.32E-05	235	4.03E-05
o-Xylene	3.75E-04	1.69E-04	1.15E-04	41.7	33.3	25.0	2.41E-04	3.04E-05	235	2.84E-05
TOTAL HAP										2.35E-03

	E	mission Facto	r ¹	Duration ²					Number	Annual ⁴
	Idle	Intermed.	Military	Idle	Intermed.	Military	Emis	sions	ons of Hours	
НАР		(lb/hr)			(%)			(g/s)	per Year ³	(tons/yr)
1,3-Butadiene	2.34E-02	9.45E-04	9.45E-04	41.7	33.3	25.0	1.03E-02	1.30E-03	350	1.81E-03
Acetaldehyde	5.99E-02	2.42E-03	2.42E-03	41.7	33.3	25.0	2.64E-02	3,32E-03	350	4.61E-03
Acrolein	2.95E-02	1.19E-03	1.19E-03	41.7	33.3	25.0	1.30E-02	1.64E-03	350	2.27E-03
Benzene	2.50E-02	1.01E-03	1.01E-03	41.7	33.3	25.0	1.10E-02	1.39E-03	350	1.93E-03
Ethylbenzene	2.23E-03	9.00E-05	9.00E-05	41.7	33,3	25.0	9.83E-04	1.24E-04	350	1.72E-04
Formaldehyde	1.92E-01	7.74E-03	7.74E-03	41.7	33.3	25.0	8.45E-02	1.06E-02	350	1.48E-02
Naphthalene	7.44E-03	3 00E-04	3.00E-04	41.7	33.3	25.0	3.28E-03	4.13E-04	350	5.73E-04
Phenol	3.22E-03	1.30E-04	1.30E-04	41.7	33.3	25.0	1.42E-03	1.79E-04	350	2.48E-04
Propionaldehyde	1.22E-02	4.90E-04	4.90E-04	41.7	33.3	25.0	5.35E-03	6.74E-04	350	9.36E-04
Styrene	5.08E-03	2.05E-04	2.05E-04	41.7	33.3	25.0	2.24E-03	2.82E-04	350	3.92E-04
Toluene	6.82E-03	2.75E-04	2.75E-04	41.7	33.3	25.0	3.00E-03	3.78E-04	350	5.25E-04
m,p-Xylene	3.72E-03	1.50E-04	1.50E-04	41.7	33.3	25.0	1.64E-03	2.06E-04	350	2.87E-04
o-Xylene	2.48E-03	1.00E-04	1.00E-04	41.7	33.3	25.0	1.09E-03	1.38E-04	350	1.91E-04
TOTAL HAP										2.87E-02

¹ The emission factors for the T700 were obtained from the United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis

Aircraft Engine and Auxiliary Power Unit Emissions Testing Report, Volume 1, Executive Summary (March 1999) (Report No. IERA-RS-BR-TR-1999-0006).

Emission factors for the T700 were not provided for military mode for acetaldehyde, acrolein, and formaldehyde; therefore, intermediate emission factors were assumed for military mode.

The emission factors for the T400 were obtained from EPA SPECIATE, Profile No. 1097 for Military Aircraft Landing/Takeoff as obtained from AQUIS Table 3 1.7-7 Speciation Factors for VOC from Jet Engine Testing (January 1995).

HAP	wt%
1,3-Buladiene	1.890
Acetaldehyde	4.830
Acrolein	2.380
Benzene	2.020
Ethylbenzene	0.180
Formaldehyde	15 480
Naphthalene	0.600
Phenol	0.260
Propionaldehyde	0.980
Styrene	0.410
Toluene	0.550
m,p-Xylene	0.300
o-Xylene	0.200

Emission factor values reported as 0.00E+00 indicate a compound that was not detected. Highlighted green cells indicate that the compound was not reported.

² The following equation was used to calculate the duration of time spent in each mode: Duration (%) = TIM, (min) / TTT (min)

where: TIM_i = time in mode i TTT = total test time

³ Number of Hours Per Year requested by Kirtland AFB.

⁴ The following equation was used to calculate annual emissions for VOC HAP: Emissions  $(ton/yr) = (\Sigma (EF_1 (lb/hr)) * (Duration (%) / 100)) * (Number of Hours per Year) / (2000 (lbs/ton)))$ 

where: EF = Emission Factor

# Table D-3

T700						
HAP	PM Emissions (lb/yr)	Speciation Factor ¹ (lb/lb)	HAP Emissions ² (lb/yr)	HAP Emissions ³ (lb/hr)	HAP Emissions ³ (g/s)	HAP Emissions ⁴ (ton/yr)
Arsenic	147.5	0.0053	0.7816	3.33E-03	4.19E-04	3.91E-04
Cadmium	147.5	0.0005	0.0737	3.14E-04	3.95E-05	3.69E-05
Chromium	147.5	0.0053	0.7816	3.33E-03	4.19E-04	3.91E-04
Lead Compounds	147.5	0.0055	0.8110	3.45E-03	4.35E-04	4.06E-04
Nickel	147.5	0.0005	0.0737	3.14E-04	3.95E-05	3.69E-05
Selenium	147.5	0.0005	0.0737	3.14E-04	3.95E-05	3.69E-05
TOTAL PM HAP						1.30E-03

# Allowable PM HAP Emissions from Aircraft Engine Testing at the 58 SOW at Kirtland AFB

T400						
HAP	PM Emissions (lb/yr)	Speciation Factor ¹ (lb/lb)	HAP Emissions ² (lb/yr)	HAP Emissions ³ (lb/hr)	HAP Emissions ³ (g/s)	HAP Emissions ⁴ (ton/yr)
Arsenic	29.2	0.0053	0.1546	4.42E-04	5.57E-05	7.73E-05
Cadmium	29.2	0.0005	0.0146	4.17E-05	5.25E-06	7.29E-06
Chromium	29.2	0.0053	0.1546	4.42E-04	5.57E-05	7.73E-05
Lead Compounds	29.2	0.0055	0.1604	4.58E-04	5.78E-05	8.02E-05
Nickel	29.2	0.0005	0.0146	4.17E-05	5.25E-06	7.29E-06
Selenium	29.2	0.0005	0.0146	4.17E-05	5.25E-06	7.29E-06
TOTAL PM HAP						2.57E-04

¹ Speciation factors from CARB (1991), Profile No. 110 for SCCs 2-04-001-01 and -02, Internal

Combustion - Aircraft Engine Testing as obtained from AQUIS Table 3.1.7-6 Speciation Factors for Particulate

Emissions from Jet Engine Testing (January 1995).

Note: Speciation Factor (lb/lb) = Speciation Factor (wt%)/100

²The following equation was used to calculate annual PM HAP emissions (lb/yr): Annual emissions (lb/yr) = PM emissions (lb/yr) * Speciation Factor (lb/lb)

³The following equation was used to calculate hourly PM HAP emissions (lb/hr): Hourly emissions (lb/hr) = PM emissions (lb/hr) * Speciation Factor (lb/lb) Hourly emissions were converted into a gram per second (g/s) emission rate: Gram per second emissions (g/s) = Hourly emissions (lb/hr) * (453.6 g/lb) * (1hr/3600s)

⁴ The following equation was used to calculate annual PM HAP emissions (ton/yr): Annual emissions (ton/yr) = Annual emissions (lb/yr) / 2000 (lb/ton)

	E	<b>Emission Factor</b>	1	Duration ²					Number	Annual ⁴
CRITERIA	Idle	Intermed.	Military	Idle	Intermed.	Military	Emiss	Emissions		Emissions (tons/yr)
		(lb/hr)			(%)		(lb/hr)	(g/s)	per Year ³	
Carbon Monoxide	6.19	2.40	2.20	41.7	33.3	25.0	3.93	0.495	8760	17.21
Nitrogen Oxides	0.45	5.14	7.43	41.7	33.3	25.0	3.76	0.474	8760	16.46
Particulate Matter ^{5,6}	0.20	0.59	1.39	41.7	33.3	25.0	0.63	0.079	8760	2.75
Particulate Matter <10µm	0.20	0.59	1.39	41.7	33.3	25.0	0.63	0.079	8760	2.75
Particulate Matter <2.5µm	0.20	0.59	1.39	41.7	33.3	25.0	0.63	0.079	8760	2.75
Sulfur Oxides	0.11	0.39	0.53	41.7	33.3	25.0	0.31	0.039	8760	1.36
Volatile Organic Compounds	8.24	0.10	0.35	41.7	33.3	25.0	3.55	0.448	8760	15.57

### Potential Criteria Pollutant Emissions from Aircraft Engine Testing at the 58 SOW at Kirtland AFB

T400										
	E	Emission Factor	,1	Duration ²					Number	Annual ⁴
	Idle	Intermed.	Military	Idle	Intermed.	Military	Emis	sions	of Hours	Emissions
CRITERIA	(lb/hr)			(%)			(lb/hr)	(g/s)	per Year ³	(tons/yr)
Carbon Monoxide	4.39	0.75	0.31	41.7	33.3	25.0	2.16	0.272	8760	9.45
Nítrogen Oxides	0.44	1.39	2.75	41.7	33,3	25.0	1.33	0.168	8760	5.84
Particulate Matter ^{5,6}	0.06	0.10	0.10	41.7	33.3	25.0	0.08	0.011	8760	0.37
Particulate Matter <10µm	0.06	0.10	0.10	41.7	33.3	25.0	0.08	0.011	8760	0.37
Particulate Matter <2.5µm	0.06	0.10	0.10	41.7	33.3	25.0	0.08	0.011	8760	0.37
Sulfur Oxides	0.12	0.24	0.35	41.7	33.3	25.0	0.22	0.027	8760	0.95
Volatile Organic Compounds	1.24	0.05	0.05	41.7	33.3	25.0	0.55	0.069	8760	2.39

¹ The emission factors for the T700, T64, and T56 (carbon monoxide, nitrogen oxides, and volatile organic compounds) were obtained from the United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis Aircraft Engine and Auxiliary Power Unit Emissions Testing Report, Volume 1, Executive Summary (March 1999) (Report No. IERA-RS-BR-TR-1999-0006) Particulate emission factors for the T700, T64, and T56 were obtained from the above-referenced report in Volume 3, Particulate Matter Results (Report No. IERA-RS-BR-TR-1999-0006-Vol.3) The emission factors for the T400 were obtained from the Aircraft Environmental Support Office Naval Aviation Depot Summary Tables of Gaseous and Particulate Emissions from Aircraft Engines, June 1990 (AESO Report No. 6-90). Particulate emissions from the T400 were obtained from the 1978 EPA document Air Pollutant Emission Factors for Military and Civil Aircraft (EPA-450/3-78-117).

SO, emission factors were calculated based on the published fuel flow for each engine in each mode and the average weight percent of sulfur in JP-8 as referenced below (also see Table D-6). The following equation was used to calculate the SO, emission factors:

Sulfur Oxide Emission Factor (lb/hr) = Sulfur vt% / 100 * Fuel Flow Rate by Mode (lb/hr) * 2 (Conversion of 2 lbs of sulfur dioxide for every lb of sulfur)

Assumed weight percent of sulfur is 0.042 as stated in Table 3-6. Average Sulfur Content Values for JP-8 Fuel, United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis Air Emissions Inventory Guidance Document for Mobile Sources at Air Force Installations (January 2002, Revised December 2003) (Report No. IERA-RS-BR-SR-2001-0010).

Fuel flow rates for the T700, T64, and T56 were obtained from the United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis Aircraft Engine and Auxiliary Power Unit Emissions Testing Report, Volume 1, Executive Summary (March 1999) (Report No. IERA-RS-BR-TR-1999-0006).

Fuel flow rates for the T400 were obtained from the Aircraft Environmental Support Office Naval Aviation Depot Summary Tables of Gaseous and Particulate Emissions from Aircraft Engines, June 1990 (AESO Report No. 6-90).

² The following equation was used to calculate the duration of time spent in each mode: Duration (%) = TIM_i (min) / TTT (min)

where: TIM_i = time in mode i TTT = total lest time

³Number of Hours Per Year requested by Kirtland AFB.

⁴ The following equation was used to calculate annual emissions for all pollutants: Emissions (ton/yr) = (Σ (EF, (tb/hr)) * (Duration (%) / 100)) * (Number of Hours per Year) / (2000 (tbs/ton))

where: EF = Emission Factor

⁵ Data is total particulate.

⁶ Assumed PM emissions equal PM10 emissions and PM2.5 emissions

# Tab 5

## Worst-Case Hourly Emissions by Operating Scenario from Aircraft Engine Testing at the 58 SOW at Kirtland AFB

	Emission Rates by Operating Scenario (Ib/hr)											
	1	2,3,4,5	6	7,8	9,10	11	Worst-Case					
	T400 (N+S)	T400+T700	T700 (N,S)	T400 (N,S)+T700	T700 (N,S)+T400	T700 (N,S)+T400 (N,S)	Scenario ¹					
CRITERIA												
Carbon Monoxide	4.31	6,09	7.86	8.24	10.02	12.17	12.17					
Nitrogen Oxides	2.67	5.09	7.52	6.43	8.85	10.19	10.19					
Particulate Matter	0.17	0.71	1.26	0.79	1.34	1.42	1.42					
Particulate Matter <10µm	0.17	0.71	1.26	0.79	1.34	1.42	1.42					
Particulate Matter <2.5µm	0.17	0.71	1.26	0.79	1.34	1.42	1.42					
Sulfur Oxides	0.43	0.53	0.62	0.74	0.84	1.05	1.05					
Volatile Organic Compounds	1.09	4.10	7.11	4.65	7.65	8.20	8.20					

			Emission F	Rates by Operating Sce	enario (lb/hr)		
	1	2,3,4,5	6	7,8	9,10	11	Worst-Case
	T400 +T400	T400+T700	T700+T700	T400 (N,S)+T700	T700 (N,S)+T400	T700 (N,S)+T400 (N,S)	Scenario ¹
VOC HAP							
1,3-Butadiene	2.06E-02	1.03E-02	0.00E+00	2.06E-02	1.03E-02	2.06E-02	2.06E-02
Acetaldehyde	5.27E-02	2.75E-02	2.18E-03	5.38E-02	2.85E-02	5.49E-02	5.27E-02
Acrolein	2.60E-02	1.34E-02	8.60E-04	2.64E-02	1.39E-02	2.68E-02	2.60E-02
Benzene	2.21E-02	1.38E-02	5.62E-03	2.49E-02	1.66E-02	2.77E-02	2.21E-02
Ethylbenzene	1.97E-03	1.18E-03	3.97E-04	2.16E-03	1.38E-03	2.36E-03	1.97E-03
Formaldehyde	1.69E-01	9.79E-02	2.67E-02	1.82E-01	1.11E-01	1.96E-01	1.69E-01
Naphthalene	6.55E-03	3.72E-03	8.88E-04	6.99E-03	4.16E-03	7.44E-03	6.55E-03
Phenol	2.84E-03	1.42E-03	0.00E+00	2.84E-03	1.42E-03	2.84E-03	2.84E-03
Propionaldehyde	1.07E-02	5.35E-03	0.00E+00	1.07E-02	5.35E-03	1.07E-02	1.07E-02
Styrene	4.48E-03	2.53E-03	5.77E-04	4.76E-03	2.81E-03	5.05E-03	4.48E-03
Toluene	6.00E-03	3.77E-03	1.53E-03	6.77E-03	4.53E-03	7.53E-03	6.00E-03
m,p-Xylene	3.28E-03	1.98E-03	6.86E-04	3.62E-03	2.32E-03	3.96E-03	3.28E-03
o-Xylene	2.18E-03	1.33E-03	4.83E-04	2.42E-03	1.57E-03	2.67E-03	2.18E-03

			Emission Rates by Operating Scenario (Ib/hr)											
	1	2,3,4,5	6	7,8	9,10	11	Worst-Case							
	T400 +T400	T400+T700	T700+T700	T400 (N,S)+T700	T700 (N,S)+T400	T700 (N,S)+T400 (N,S)	Scenario ¹							
PM HAP														
Arsenic	1.77E-03	4.21E-03	6.65E-03	4.21E-03	7.09E-03	7.53E-03	6.65E-03							
Cadmium	1.67E-04	3.97E-04	6.28E-04	3.97E-04	6.69E-04	7.11E-04	6.28E-04							
Chromium	1.77E-03	4.21E-03	6.65E-03	4.21E-03	7.09E-03	7.53E-03	6.65E-03							
Lead	1.83E-03	4.37E-03	6.90E-03	4.37E-03	7.36E-03	7.82E-03	6.90E-03							
Nickel	1.67E-04	3.97E-04	6.28E-04	3.97E-04	6.69E-04	7.11E-04	6.28E-04							
Selenium	1.67E-04	3.97E-04	6.28E-04	3.97E-04	6.69E-04	7.11E-04	6.28E-04							

 Selenium
 1.67E-04
 3.97E-04
 6.28E

 ¹Worst-case scenario is the maximum hourly pollutant emission rate of all operating scenarios. Scenarios
 Scenarios
 Scenarios

1	T400N	T400S	
2	T400N	T700S	
3	T400N	T700N	
4	T400S	T700S	
5	T400S	T700N	
6	T700N	T700S	
7	T400N	T400S	T700N
8	T400N	T400S	T700S
9	T700N	T700S	T400N
10	T700N	T700S	T400S
11	T700N	T700S	T400N

T440S

Revisi y 2014

# Fuel Flow Rates for Aircraft Engine Testing at the 58 SOW at Kirtland AFB

T700	Fuel Flow Rates (lb/hr)
Idle	134
Intermediate	469
Military	626

T400	Fuel Flow Rates (lb/hr)
Idle	143
Intermediate	283
Military	412

Fuel flow rates for the T700 were obtained from the United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis Aircraft Engine and Auxiliary Power Unit Emissions Testing Report, Volume 1, Executive Summary (*March 1999*) (*Report No. IERA-RS-BR-TR-1999-0006*).

Fuel flow rates for the T400 were obtained from the Aircraft Environmental Support Office Naval Aviation Depot Summary Tables of Gaseous and Particulate Emissions from Aircraft Engines, June 1990 (AESO Report No. 6-90).

# **Emission Estimates**

# Permit 1759-M1-RV1 – AFRL SOL Facility

Emission Unit IDs

19135, 19155, 19156, 19157, 19158

# Summary of Emissions for the Generators at SOR Location

				Hourly	/ Emissions	(lb/hr)		
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10µm	Particulate Matter <2.5μm
1	Emergency Generator, Building 66048, ID 19135	45.67	52.82	0.36	0.0072	0.12	0.12	0.12
2	Emergency Generator, Building 66001, ID 19155	4.24	6.76	0.47	2.13	0.19	0.19	0.19
3	Emergency Generator, Building 66001, ID 19156	4.24	6.76	0.47	2.13	0.19	0.19	0.19
4	Emergency Generator, Building 66001, ID 19157	4.24	6.76	0.47	2.13	0.19	0.19	0.19
5	Emergency Generator, Building 66001, ID 19158	4.24	6.76	0.47	2.13	0.19	0.19	0.19
	Total	62.62	79.85	2.26	8.51	0.89	0.89	0.89

				Annual	Emissions	(ton/yr)		
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10µm	Particulate Matter <2.5µm
1	Emergency Generator, Building 66048, ID 19135	4.57	5.28	0.036	0.0007	0.012	0.012	0.012
	Emergency Generator, Building 66001, ID 19155	0.42	0.68	0.047	0.21	0.019	0.019	0.019
	Emergency Generator, Building 66001, ID 19156	0.42	0.68	0.047	0.21	0.019	0.019	0.019
	Emergency Generator, Building 66001, ID 19157	0.42	0.68	0.047	0.21	0.019	0.019	0.019
	Emergency Generator, Building 66001, ID 19158	0.42	0.68	0.047	0.21	0.019	0.019	0.019
	Total	6.26	7.98	0.23	0.85	0.089	0.089	0.089

# Summary of Emissions for the Generators at SOR Location

				Potentia	I Emissions	(ton/yr)		
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10µm	Particulate Matter <2.5µm
1	Emergency Generator, Building 66048, ID 19135	200.03	231.35	1.59	0.032	0.53	0.53	0.53
2	Emergency Generator, Building 66001, ID 19155	18.57	29.60	2.08	9.31	0.84	0.84	0.84
3	Emergency Generator, Building 66001, ID 19156	18.57	29.60	2.08	9.31	0.84	0.84	0.84
4	Emergency Generator, Building 66001, ID 19157	18.57	29.60	2.08	9.31	0.84	0.84	0.84
5	Emergency Generator, Building 66001, ID 19158	18.57	29.60	2.08	9.31	0.84	0.84	0.84
	Total	274.30	349.74	9.89	37.29	3.90	3.90	3.90

# Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Building 66048 (Unit ID 19135) Process Equipment Unit No. 1

## Generator

1334 hp

Criteria Air Pollutants	Emission Estimation Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF, Calculated Fuel Flow (Sheet 2)	45.67	4.57	200.03
Nitrogen Oxides	Manufacturer EF (Sheet 1)	52.82	5.28	231.35
Particulate Matter ⁵	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.12	0.012	0.53
Particulate Matter <10µm	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.12	0.012	0.53
Particulate Matter <2.5µm	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.12	0.012	0.53
Sulfur Oxides	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.0072	0.00072	0.032
Volatile Organic Compounds	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.36	0.036	1.59

The generator operates a maximum of 200 hours per year and is powered by natural gas.

¹ Emission Estimation Data Source Explanations:

Manufacturer EF (Sheet 1): Emission calculations were performed using Manufacturer Emission Factors.

AP-42 EF, Calculated Fuel Flow (Sheet 2): Emission calculations were performed using AP-42 Emission Factors and

calculated Fuel Flow using the manufacturer specified brake specific fuel consumption.

*AP-42 EF, Manufacturer Fuel Flow (Sheet 3)*: Emission calculations were performed using AP-42 Emission Factors and Manufacturer Specified Fuel Flow.

Worst-case emissions are estimated for the generator using the methodology described in each sheet.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year. Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: DTE (text r) = User the emissions (Ib(text + 0.200) (Ib(text)))

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

 5 Assumed Particulate Matter emissions equal Particulate Matter < 10  $\mu$ m and Particulate Matter <2.5  $\mu$ m emissions.

# Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet Emergency Generator at Building 66048 (Unit ID 19135) Process Equipment Unit No. 1

Generator

1334 hp

Criteria Air Pollutants	Manufacturer Emission Factors ¹ (g/hp-hr)	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide Nitrogen Oxides	4.74 17.96	13.94 52.82	1.39 5.28	61.06 231.35
Particulate Matter Particulate Matter <10µm Particulate Matter <2.5µm Sulfur Oxides		cturer emission fa	ctors not available	
Volatile Organic Compounds ⁵	0.23	0.68	0.068	2.96

The generator operates a maximum of 200 hours per year and is powered by natural gas.

¹ The highest emission factor for the load was used.

² The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / 453.6 (g/lb) where: EF = Emission Factor hp = horse power

³ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁵ Emission factor is for non-methane hydrocarbons (NMHC). VOC emissions conservatively assumed to be equal to NMHC.

# Sheet 2 - AP-42 Emission Factors, Calculated Fuel Flow Emission Calculation Spreadsheet Emergency Generator at Building 66048 (Unit ID 19135) Process Equipment Unit No. 1

#### Generator 1334 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (scf/hr)	Heating Value (HV) ³ (Btu/scf)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	3.72	12036.1	1020	45.67	4.57	200.03
Nitrogen Oxides	2.27	12036.1	1020	27.87	2.79	122.06
Particulate Matter ^{7,8}	0.00991	12036.1	1020	0.12	0.012	0.53
Particulate Matter <10µm	0.00991	12036.1	1020	0.12	0.012	0.53
Particulate Matter <2.5µm	0.00991	12036.1	1020	0.12	0.012	0.53
Sulfur Oxides	0.000588	12036.1	1020	0.0072	0.0007	0.032
Volatile Organic Compounds	0.0296	12036.1	1020	0.36	0.036	1.59

The generator operates a maximum of 200 hours per year and is powered by natural gas.

¹ Emission factors from EPA AP-42 Section 3.2 Natural Gas-fired Reciprocating Engines, Table 3.2-3 Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines (July 2000). Manufacturer emission data sheet reports that the engine exhaust percent oxygen is 2.9% in standby mode and the Cummins representative states this engine is a rich burn engine.

² The following equation was used to calculate hourly fuel use:

Hourly fuel use = hp * Manufacturer Specified brake specific fuel consumption (9,203 Btu/hp-hr) * 1/HV (Btu/scf) The manufacturer specified brake specific fuel consumption resulting in the highest emissions is 9,203 Btu/hp-hr (Continuous Mode).

³ The heating value (HV) of natural gas is given in AP-42 Section 3.2 Table 3.3-2 (footnote b) as 1020 Btu/scf (July 2000).

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (scf/hr) * HV (Btu/scf) / 1000000 where: EF = Emission Factor HV = Heating Value

⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ Data is total particulate.

 8  Assumed particulate matter (PM) emissions equal PM <10  $\mu m$  and PM <2.5  $\mu m$  emissions.

# Sheet 3 - AP-42 Emission Factors, Manufacturer Specification Fuel Flow Emission Calculation Spreadsheet Emergency Generator at Building 66048 (Unit ID 19135) Process Equipment Unit No. 1

# Generator

# 1334 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (scf/hr)	Heating Value (HV) ³ (Btu/scf)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	3.72	11600.0	1020	44.02	4.40	192.79
Nitrogen Oxides	2.27	11600.0	1020	26.86	2.69	117.64
Particulate Matter ^{7,8}	0.00991	11600.0	1020	0.12	0.012	0.51
Particulate Matter <10µm	0.00991	11600.0	1020	0.12	0.012	0.51
Particulate Matter <2.5µm	0.00991	11600.0	1020	0.12	0.012	0.51
Sulfur Oxides	0.000588	11600.0	1020	0.0070	0.00070	0.030
Volatile Organic Compounds	0.0296	11600.0	1020	0.35	0.035	1.53

The generator operates a maximum of 200 hours per year and is powered by natural gas.

¹ Emission factors from EPA AP-42 Section 3.2 Natural Gas-fired Reciprocating Engines, Table 3.2-3 Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines (July 2000). Manufacturer emission data sheet reports that the engine exhaust percent oxygen is 29% in standby mode and the Cummins representative states this engine is a rich burn engine.

² Maximum manufacturer specified fuel flow.

³ The heating value (HV) of natural gas is given in AP-42 Section 3.2 Table 3.3-2 (footnote b) as 1020 Btu/scf (July 2000).

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (scf/hr) * HV (Btu/scf) / 1000000 where: EF = Emission Factor HV = Heating Value

⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ Data is total particulate.

 8  Assumed particulate matter (PM) emissions equal PM <10  $\mu m$  and PM <2.5  $\mu m$  emissions.

# Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generators at Building 66001 (Unit IDs 19155, 19156, 19157, and 19158) Process Equipment Unit Nos. 2, 3, 4, and 5

# Generator

752 hp

Criteria Air Pollutants	Emission Estimation Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide⁵	AP-42 EF, Manufacturer Fuel Flow (Sheet 3)	4.24	0.42	18.57
Nitrogen Oxides ⁵	Manufacturer EF (Sheet 1)	6.76	0.68	29.60
Particulate Matter ⁵	Manufacturer EF (Sheet 1)	0.19	0.019	0.84
Particulate Matter <10µm	Manufacturer EF (Sheet 1)	0.19	0.019	0.84
Particulate Matter <2.5µm	Manufacturer EF (Sheet 1)	0.19	0.019	0.84
Sulfur Oxides	AP-42 EF, Calculated Fuel Flow (Sheet 2)	2.13	0.21	9.31
Volatile Organic Compounds ⁵	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.47	0.047	2.08

Each generator operates a maximum of 200 hours per year and is powered by diesel fuel.

Please note: These spreadsheets are calculating for <u>one</u> of the four identical generators. The Summary of Emissions sheets show individual emissions for each 752 hp generator and total emissions for the facility.

¹ Emission Estimation Data Source Explanations:

Manufacturer EF (Sheet 1): Emission calculations were performed using Manufacturer Emission Factors. AP-42 EF, Calculated Fuel Flow (Sheet 2): Emission calculations were performed using AP-42 Emission Factors and calculated Fuel Flow.

*AP-42 EF, Manufacturer Fuel Flow (Sheet 3)*: Emission calculations were performed using AP-42 Emission Factors and Manufacturer Specified Fuel Flow.

Unless the pollutant is subject to an NSPS standard (see footnote 5) and emission estimates exceed the applicable standard, worst-case emissions are estimated for the generator using the methodology described.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year. Refer to calculations on specific sheet for emission calculation methodology.

 ⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:
 PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁵ These generators are subject to 40 CFR Part 60 Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines and are equipped with model year 2008 engines rated at 752 hp (560.8 kW). Based on the engine rating (560.8 kW) and displacement of less than 10 liters per cylinder, these generators must comply with the emission standards in 40 CFR 89.112 Table 1 for rated power greater than 560 kW, Tier 2 (Model Year 2006 and beyond). These generators meet the standards outlined in this regulation.

# Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet Emergency Generators at Building 66001 (Unit IDs 19155, 19156, 19157, and 19158) Process Equipment Unit Nos. 2, 3, 4, and 5

Generator

752 hp

Criteria Air Pollutants	Manufacturer Emission Factors (g/hp-hr)	Hourly Emissions ¹ (Ib/hr)	Annual Emissions ² (ton/yr)	PTE ³ (ton/yr)
Carbon Monoxide	0.786	1.30	0.13	5.71
Nitrogen Oxides	4.076	6.76	0.68	29.60
Particulate Matter	0.116	0.19	0.019	0.84
Particulate Matter <10µm ⁴	0.116	0.19	0.019	0.84
Particulate Matter <2.5µm⁴	0.116	0.19	0.019	0.84
Sulfur Oxides	Manufa	acturer emission fa	ctor not available	
Volatile Organic Compounds	0.234	0.39	0.039	1.70

Each generator operates a maximum of 200 hours per year and is powered by diesel fuel.

Please note: These spreadsheets are calculating for <u>one</u> of the four identical generators. The *Summary of Emissions* sheets show individual emissions for each 752 hp generator and total emissions for the facility.

¹ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / 453.6 (g/lb)

where: EF = Emission Factor

hp = horse power

² The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

³ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

PTE(torr/yr) = Hourry errissions(to/nr) = 8760(tris/yr) / 2000(to/torr)

 4  Manufacturer exhaust emission data given for Particulate Matter (PM). Assumed PM emissions equal Particulate Matter <10  $\mu$ m and Particulate Matter <2.5  $\mu$ m emissions.

# Sheet 2 - AP-42 Emission Factors, Calculated Fuel Flow Emission Calculation Spreadsheet Emergency Generators at Building 66001 (Unit IDs 19155, 19156, 19157, and 19158) Process Equipment Unit Nos. 2, 3, 4, and 5

# Generator

### 752 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.85	38.4	137000	4.47	0.45	19.60
Nitrogen Oxides	3.2	38.4	137000	16.84	1.68	73.78
Particulate Matter	0.1	38.4	137000	0.53	0.053	2.31
Particulate Matter <10µm ⁷	0.1	38.4	137000	0.53	0.053	2.31
Particulate Matter <2.5µm ⁸	0.1	38.4	137000	0.53	0.053	2.31
Sulfur Oxides ⁹	0.404	38.4	137000	2.13	0.21	9.31
Volatile Organic Compounds ¹⁰	0.09	38.4	137000	0.47	0.047	2.08

Each generator operates a maximum of 200 hours per year and is powered by diesel fuel.

Please note: These spreadsheets are calculating for <u>one</u> of the four identical generators. The Summary of Emissions sheets show individual emissions for each 752 hp generator and total emissions for the facility.

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel and All Stationary Dual-Fuel Engines, Table 3.4-1 (October 1996).

- ² The following equation was used to calculate hourly fuel use: Hourly fuel use = hp * Brake specific fuel consumption (7000 Btu/hp-hr) * 1/HV (Btu/gal)
- ³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/gal.
- ⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor HV = Heating Value
- ⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

 7,8  Assumed Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

⁹ The following equation was used to calculate the sulfur oxides emission factor: Sulfur oxides emission factor = 1.01 * S where: S = Percent sulfur in diesel fuel (0.4% from AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels)

¹⁰ Volatile Organic Compounds assumed to be Total Organic Compounds (TOC).

# Sheet 3 - AP-42 Emission Factors, Manufacturer Specification Fuel Flow Emission Calculation Spreadsheet Emergency Generators at Building 66001 (Unit IDs 19155, 19156, 19157, and 19158) Process Equipment Unit Nos. 2, 3, 4, and 5

# Generator

# 752 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.85	36.4	137000	4.24	0.42	18.57
Nitrogen Oxides	3.2	36.4	137000	15.96	1.60	69.89
Particulate Matter	0.1	36.4	137000	0.50	0.050	2.18
Particulate Matter <10µm ⁷	0.1	36.4	137000	0.50	0.050	2.18
Particulate Matter <2.5µm ⁸	0.1	36.4	137000	0.50	0.050	2.18
Sulfur Oxides ⁹	0.404	36.4	137000	2.01	0.20	8.82
Volatile Organic Compounds ¹⁰	0.09	36.4	137000	0.45	0.045	1.97

Each generator operates a maximum of 200 hours per year and is powered by diesel fuel.

Please note: These spreadsheets are calculating for <u>one</u> of the four identical generators. The Summary of Emissions sheets show individual emissions for each 752 hp generator and total emissions for the facility.

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel and All Stationary Dual-Fuel Engines, Table 3.4-1 (October 1996).

² Maximum manufacturer specified fuel flow.

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/gal.

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor HV = Heating Value

⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

^{7,8} Assumed Particulate Matter <2.5μm and Particulate Matter <10μm equal particulate matter.

# **Emission Estimates**

# Permit 1770-RV3 – 58 SOW Corrosion Control Facility

Emission Unit ID

21015

# Table E-1. Worst-Case Hourly and Potential Annual Emissions of VOC and Volatile HAPs

Flow Rate (gal/hr)	Average Density (Ib/gal)	Max Paint Usage (lb/hr)	Pollutant	Max Pollutant Content (%)	Max Pollutant Emissions (Ib/hr)	Potential Hours of Operation	Potential Pollutant Emissions (tpy)	g/s for modeling
6	10	60	VOC	100.0%	60.00	8760	262.8	7.56
6	10	60	Cumene	1.0%	0.60	8760	2.6	0.08
6	10	60	Ethylbenzene	9.0%	5.40	8760	23,7	0.68
6	10	60	Methyl Alcohol	50.0%	30.00	8760	131.4	3.78
6	10	60	Methylene Chloride	50.0%	30.00	8760	131.4	3.78
6	10	60	MIBK	18.6%	11.17	8760	48.9	1.41
6	10	60	PAH	10.0%	6.00	8760	26.3	0.76
6	10	60	Toluene	11.7%	7.03	8760	30.8	0.89
6	10	60	Triethylamine	0.5%	0.30	8760	1.3	0.04
6	10	60	Xylene	10.0%	6.00	8760	26.3	0.76

gal/hr = gallons per hour

lb/gal = pounds per gallon

lb/hr = pounds per hour

tpy = tons per year

VOC = Volatile Organic Compound

MIBK = Methyl Isobutyl Ketone

PAH = Polycyclic Aromatic Hydrocarbon

# Table E-2. Worst-Case Hourly and Potential Annual Emissions of Particulate Matter and Particulate HAPs

Flow Rate ¹ (gal/hr)	Average Density ² (lb/gal)	Max Paint Usage (lb/hr)	Pollutant	Max Pollutant Content (%)	Particle Size Distribution ³	Transfer Efficiency (%)	Control Efficiency ⁴ (%)	Max Pollutant Emissions (lb/hr)	Controlled Pollutant Emissione (Ib/hr)	Potential Hours of Operation	Potential Pollutant Emissions (tpy)	g/s for modeling
6	10	60	PM/PM10/PM2.5	98.3%		65.0%	75.0%	20.65	5.16	8760	90.4	0.65
6	10	60	Cobalt Compounds	0.1%		65.0%	75.0%	0.03	0.01	8760	0.1	0.001
1.5	12.7	19.1	Chromium Compounds - Total	23.2%				1.55	0.05		6.8	0.007
1.5	12.7	19.1	Chromium Compound - <pm2.5< td=""><td>23.2%</td><td>10.0%</td><td>65.0%</td><td>75.0%</td><td>0.15</td><td>0.04</td><td>8760</td><td>0.7</td><td></td></pm2.5<>	23.2%	10.0%	65.0%	75.0%	0.15	0.04	8760	0.7	
1.5	12.7	19.1	Chromium Compound - < PM10	23.2%	28.0%	65.0%	99.0%	0.43	0.004	8760	1.9	
1.5	12.7	19.1	Chromium Compound - >PM10	23,2%	62.0%	65.0%	99.0%	0.96	0.010	8760	4.2	

Notes:

¹ The flow rates assume two paint guns operating simultaneously.

The maximum amount of chromium containing primers to be used in one hour is one gallon per paint gun. The maximum hourly usage (flow rate) is based on process

knowledge as well as historical usage logs from the organization. Both chromium containing primers are mixed in a ratio of 3 parts (Part 1) to 1 part (Part 2).

² For the chromium containing primers, the maximum density of the two-part paint was used to illustrate the most conservative scenario.

³ Particle size distribution was determined based on a study in the Annals of Occupational Hygiene entitled "Size Distribution and Speciation of Chromium

in Paint Spray Aerosol at an Aerospace Facility" (Sabty-Daily 2005). A copy of this study is included in Appendix D.

⁴ Paint filter control efficiencies for liquids were determined based on the manufacturer filter specifications included in Appendix D.

#### Table E-3. Weight Percent and Annual Emissions of Volatiles from Each Paint

Material Used	NSN	Material Usage (gal/yr)	Material Density (Ibs/gal)	Material Usage (lbs/yr)	VOC	VOC (tons/year)	Cumene	Cumene (tons/year)	Ethylbenzene	Ethylbenzene (tons/year)	Methyi Alcohol	Methyl Alcohol (tons/year)	Methylene Chloride	Methylene Chloride (tons/year)	МІВК %	MIBK (tons/year)	PAH	PAH (tons/year)	Toluene	Toluene (tons/year)	Triethylamine	Triethylamine (tons/yr)	Xylene %	Xylene (tons/year)
Thinners/Reducers	110/1	(Penki)	(insufferi)	Trostil	innAn	(manakkear)		(tonorypar)	78.	(invis/jobi)	70	Tiousyear		Troughters 1	.70	(Inception)	(9)	(toriorycar)		(man four	10	1100100-317		Traine Jacart
Polyurethane Thinner	8010-00-181-8080	5	7.42	3	7 7.4	0.02			1.179	0.00022		10000000000					-	1	11.72%	0.002		112001	6.64%	0.001
Epoxy Paint Reducer	8010-01-200-2637		7.01			0.02				0.00023			-		18.81%	0.003	3			4/	-			
Denatured Alcohol	6810-00-782-2686	5	6.74												1.00%	0.000			-				1	1
Paint Stripper PR-3500	8010-00-181-7568		9.17			0.05					-	1.000	1.00%	0.0005	17.00.000				-					
Poly/Epoxy Stripper	8010PPWC-10-76		10.01		10.01				-		50.00%	0.025					-		-					
					-	-		11.11.1																1
Primers				-	1									-				-						1
Dark Green 34052	8010-01-218-7354					1								11000				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.						
	Part 1	15	12.70				1.00%	0.0010	2															
	Part 2	5	9.53	48	5 0.10	0.00						A SHELE								ALC: NO.				
Yellow	8010-01-416-6557	E al				12												1 Same						
	Part 1		\$2.70				0.10%	0.000	8															
	Part 2	6	8.05	:40	2.14	5 0.01	1.00%	0.0002	2			ALC: TELE					10.00%	0.010				2012		1.0
			1			A THE PARTY OF				2010-21-2				CT multiple		1721		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		1000			1	
Polyurethane Coating Kits				-		1		2					-							-				
Black 17038	8010-01-285-3047					1.000								little in						10.00				
	Part 1		8.84					0.000	1			10.000				2-11		1		184 1811				1 Dinnet
	Part 2	5	8:11	4	1 4.01	0.01		<u> 종신막[목-13</u>						1.00		A STATES	7.00%	0.005		1	-	and the second		100 C
Black 37038	8010-01-285-3555															1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				11/ -11				
	Part 1		9.84							<b>CLUTEDIA</b>														
	Part 2	5	9.02	4	5 2.3	3 0.01	0.10%	0.0000	2	Lange of Station	-	11111111		STOR			1	1000		1		Versile Constants		
Gray 15187	8010-00-286-7731	an-n			1	du Harris				James Barrowski	()		6	V-111						PERIOD N			_	
	Part 1	15	7.51			0.05			-			dellara"-									0.500%	0.0003		Las E. E.
	Part 2	5	9.17	46	5.16	0.01		THURSDAY.	5.00%	0.00115	1			1.0.0		11				1.1.1.			10.00%	0.002
Gray 16473	8010-01-338-3032		1	1.00		11.5011.03		(a		10000		10.11		11 million and a second				10.471/1017						Televinet.
	Part 1	15	12.29					THE WERE		THE REPORT				FRU LAND		the set of the set	-					1000	-	
	Part 2	5	7,92	40	4.5	0.01	0.10%	0,0000		- 100	1	1000		1	5.00%	0.001	1	1.0.00						
/ 25173	8010-01-339-7015		12 8 3	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.								1111-0				The William						and the second second		
	Part 1	15	10.85	163	3 2.1	0.02		2211				151111	-	1.11		100		1000		100				
	Part 2	5	7.96	40	4.4	0.01	0.10%	0.0000	1			CONTRACTOR OF STREET		1		1992		COLUMN THE		10000		Contraction in the	1	
Gray 36118	8010-01-305-5551	1	11 Street	100				-		Contraction of the local division of the loc						100				1				
	Part 1	30	10.14	304	4 3.8	0.06	-		1.00%	0.00152								1.000						
	Part 2	10	9.02	90	2.3	0.01	0.10%	0.0000	9			COLUMN AND		CHILD I				1111111				E . T 11 1		
Gray 36173	8010-01-345-6535	5	10.00					1		Therefore we		100 000	-	THE CO.		10000				1				
	Part 1	15	10.27	154	\$ 3.85	0.03		California (California)	1.00%	0.00077	S	Charles and the second				and the second		AND INCOME.		The second	8	Cherry Martin		A But Sheet
	Part 2	5	9.02	45	5 2.3	0.01	0.10%	0.0000				200 - 201 - 1		Status Later		and the second second	1	110000000000000000000000000000000000000		12		0.0000000000000000000000000000000000000		
Gray 36176	8010-01-492-4700							1				Participation (1)		1.1.1		T. Statili				Res aller a		ESTATE: TO		
	Part 1	15	9.31	140	3.9;	0.03	0.10%	0.0001	1.50%	0.00105		E3=1.5.1011											7.00%	0.005
	Part 2	5	8.94	45	5 2,2	0.01				111111				11000000				1		Tak Street				1.1.1
Gray 35251	8010-01-492-4699	1						The second second		Contraction of the		or and the second second						1	1			and the second second		
	Part 1	15	9.26	139	3.88	0.03	0.10%	0.0001	1.50%	0.00104			2	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	-			1111110					7.00%	0.005
	Part 2	5	8.94																			-		1
Gray 36293	8010-01-380-3249			-		1						1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.							-					
	Part 1	15	10,32	158	3.65	0.03			1.00%	0.00077				-						2		1.000		
	Part 2		9.02				0.10%	0.0000									-					1		
Gray 36320	8010-01-329-6755				-	1.00						-												
	Part 1	15	10.25	154	1 3.9	9 0.03			1.00%	0.00077														
	Part 2		9.02				1.00%	0.0002									-				-			
Gray 37200	8010-01-397-3981	-				2.03					-							1.7						
	Part 1	15	9.90	148	3 51	0.03	0.10%	0.0001		1		-			1.50%	0.001	1							
	Part 2		9.02					0.0000				ENDION					1			TIME				
Gireen 14852	8010-01-362-3876			1														-		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
	Part 1		10.42	156	3 2 18	0.02		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	-						1	1		19-19-11				
	Part 2		8.40				1.00%	0.0002		ALC: NO.	-				5.00%	0.001	1 1.50%	0.001						
Green 34092	8010-01-336-3035			-						The state of the second		TELEVIC								-				
	Part 1	15	10.21	153	3.89	0.03	-	-	1.00%	0.00077			1										-	
	Part 2		9.02				0.10%	0.0000									-					1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		-
een 34102	8010-01-336-3036																					1		1.1.1.1.1.1
	Part 1	15	10.05	151	3.87	0.03			1.00%	0.00075														
	Part 2		9.02					0.0000			-							-						
Green 24052	8010-01-305-5555										-		-											
		15	9.03	135	-	0.03			-								-		-		-			

#### Table E-3. Weight Percent and Annual Emissions of Volatiles from Each Paint

Material Used	NSN	Material Usage (gal/yr)	Material Density (Ibs/gal)	Material Usage (lbs/yr)	VOC lb/gal	VOC (tons/year)	Cumene %	Cumene (tons/year)	Ethylbenzene	Ethylbenzene (tons/year)	Methyl Alcohol %	Methyl Alcohol (tons/year)	Methylene Chloride	Methylene Chloride (tons/year)	MIBK	MIBK (tons/year)	PAH %	PAH (tons/year)	Toluene	Toluene (tons/year)	Triethylamine	Triethylamine (tons/yr)	Xylene %	Xylene (tons/year)
	Part 2	5	9.12	46	1.82	0.00	0.10%	0.0000																
Red 11136	8010-01-265-9139		100			Notification and		1.1.1.1.1.1.1.1		TT		10110-0110				Contraction Castr		1.111111					1	100
	Part 1	15	9.47	142	2.61	0.02		12.7.1		THE REPORT OF		1.000	0				-	1000000000		1012-04-0				1.81.65
	Part 2	5	8.11	41	4.09	0.01	1.00%	0.0002				SHEWHULL		WI STERN			7.00%	0.005		and the second				
White 17925	8010-01-265-9143						A GUNDA	2010		11111112						10000								120110
	Part 1	15	12.92	194	2.29	0.02	0.10%	0.0001		110/11 255		1111111111					-							
	Part 2	5	7.92		4.59	0.01	0.10%	0.0000				1.0.1			5.00%	0.001				-				
Enamels																								
Light Gray	8010-00-141-7842	5	10.43	52	5.00	0.01			9.00%	0.00002		1100000000	-					-						11.000
Yellow 13538	8010-00-286-7758		9.09												-			0.000		1.1				
Dur-A-Plex Alkyd Enamel	8010-00-515-1596		10.05		3.22									11000										
Walk Way Dark Gull Gray	8010-00-541-0426	5	10.17	51	3.50	0.01				1					-						1		1.50%	
Walk Way Black 37038	8010-00-641-0427	5	10.76	54	3.22	0.01	1								-								1.50%	
Centari 5000 Urethane	6010P700A	5	8.14	41	6.11	1 V 1002	TEXLONG	C1 Cb.0002								13 11				C INTRA			2.00%	0.000
80-Base/Clear Rust	8010P80-34	5	10.37	52	1.85	0.00				1000		1		1000				Control House The			-	Service Service	S	Alexandre and alexander
90-Bases/Colors Rust	8010P90BASES	5	10.39	52	1.84	0.00		a fei las						111	-			Sen Guild		1				
								1000					-	1.1.1		1900 B								-
Aerosols			0.00															-	-					
Black 37038	8010-01-331-6108	5	6.29		1.0011000			Later Line										100000					-	-
Red 11105	8010-01-331-6110	5	6.66	33	3.60	0,01			-	01.7				12		1000	-				-			
Other						-									-		-							
NOX-RUST Corrosion Preventive	8030-00-231-2354	5	7.51	38	0.4	0.00				THE OWNER				1000		1.52.00.0	í.					100		10000
				-	-	Color Street				-215-5-	_				-	a States			-			11	-	-
TOTAL	-	510		4960	-	0.9449		0.0027		0.0088	-	0.0250		0.0255	-	0.0076	-	0.0203		0.0022		0.0003		0.0145
		-						5.46		17.66		50.04		50.96		15.14		40.63	1	4.35		0.56		28.93

votal Volatile HAP (pounds/year) 213.7

## Table E-4. Weight Percent and Annual Emissions of Particulates from Each Paint

		Transfer Efficiency	PM Control Efficiency	Material Usage	Material Density	Material Usage	Solids	PM	Cobalt Compounds	Cobalt Compounds	Barium Chromate	Barium Chromate	Sodium Chromate	Sodium Chromate	Strontium Chromate	Strontium Chromate	Zinc Chromate	Zinc Chromate
Material Used	NSN.	%	%	(gal/yr)	(lbs/gal)	(lbs/yr)	wt%	(tons/year)	%	(tons/year)	%	(tons/year)	96	(tons/year)	%	(tons/year)	%	(tons/year
Thinners/Reducers																		
Polyurethane Thinner	8010-00-181-8080	65%	75%		7.42	37	0.00%	0.0000										
Epoxy Paint Reducer	8010-01-200-2637	65%	75%		7.01	35	0.08%	0.0000				TO HOLD T		1000				THE REPORT OF
Denatured Alcohol	6810-00-782-2686	65%	75%			34	0.00%	0.0000						-		"miles li		1010100
Paint Stripper PR-3500	8010-00-181-7568	65%	75%			.92	1.90%	0,0001				11.1.1	1.00%	0.00004			8	1000
PWC 10-76 Poly/Epoxy Stripper	8010PPWC-10-76	65%	75%	10	10.01	100	0.00%	0.0000			-							
Primors									-			Contraction and						
Dark Green 34052	8010-01-218-7354							and the second										and the second
	Part 1	65%	75%			191	74.81%	0.0062		TEL CIENTING	23.04%	0.00192			0.10%	0,00001	0.10%	0.000
	Part 2	65%	75%	5	9.53	48	98.32%	0.0021						The second second		Committee and		A function of the
Yellow	8010-01-416-6557			5000	and the second					Contraction (States)				Continued and		1		
	Part 1	65%	75%	15		191	77.01%	0.0064			10 C				19.13%	0.00159		and mestiles
	Part 2	65%	75%	5	8.05	40	73,16%	0.0013				and the second						
Polyurethane Coating Kits					and the Construction													
Black 17038	8010-01-285-3047			THE P		11010				CALIFORNIA		COMPACT AND INCOMENT						TWITES 12
	Part 1	65%	75%	15	8.84	133	67.54%	0.0039		ale diment		and the second second		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		- felining (1) (		bet of the s
	Part 2	65%	75%	5	8.11	41	49.55%	0.0009		Sector and State				201		The survey of		
Black 37038	8010-01-285-3555			See Land	- States			Na se la constance da la const		111-12				والمتحد والمحد		in the second		10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	Part 1	65%	75%	15	9.84	148	59.86%	0.0039								Other states		
	Part 2	65%	75%	5	9.02	45	74.16%	0.0015				Million a State						15311521112
Gray 16187	8010-00-286-7731			TOLESK						<b>E</b> [B][[][B]]				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		HID CERTIN		
	Part 1	65%	75%	15	7.51	113	6.74%	0.0003		and station		THE REAL		I PARTY PARTY				
	Part 2	65%	75%	5	9.17	46	43,75%	0.0009		AND CALLS IN		BELO NOT				The second		2010
Gray 16473	8010-01-336-3032	1		ACCURE.	Manual Sa	White States	-	Contraction of the second second	1	The present store of the		on unen				Contraction of the local data		7-1-2-1-1-2-1-
	Part 1	65%	75%	15	12.29	184	80.97%	0.0065	1	1	1							Salah Marine
	Part 2	65%	75%	. 5	7.92	40	42.07%	0.0007				14 5 14 - 60						
Gray 26173	8010-01-339-7015				line states	102-112-1						-		Distantian (				
	Part 1	65%	75%	15	10.85	163	76.95%	0.0055			-	11.						10111111111
	Part 2	65%	75%	5	7,96	40	44.76%	0.0008										
Gray 36118	8010-01-305-5551			-	200			in site in the		14110.00			-			THE NEWS		1000
	Part 1	65%	75%	30	10.14	304	61.84%	0.0082		Contraction of the			-	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		11.00 - 0.0		Developments
	Part 2	65%	75%	10	9.02	90	73.93%	0.0029	1					1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		The lot of		122121
Gray 36173	8010-01-345-6535											10.00		THE REAL PROPERTY OF				
	Part 1	65%	75%	15	10.27	154	62.53%	0.0042		Introduction of the						10-13 CO - 1		1000
	Part 2	65%	75%	5	9.02	45	73.93%	0.0015				1		1 (II				1000
Gray 36176	8010-01-492-4700			1.00								1 112 1		220121				
	Part 1	65%	75%			140	57.88%	0.0035		-		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.						
	Part 2	65%	75%	5	8.94	45	74.61%	0.0015										
Gray 36251	8010-01-492-4699				Section 2			- Yaraball		1.000								10 L
	Part 1	65%	75%			139	58.09%	0.0035										
	Part 2	65%	75%	5	8.94	45	74.61%	0.0015		122 10 10		1.0.000		811100				
Gray 36293	8010-01-380-3249											11000						10150
	Part 1	65%	75%	15	10.32	155	62.71%	0,0042		Service Contractory		100000000000000000000000000000000000000						Contraction of the
	Part 2	65%	75%	5	9.02	45	73.93%	0.0015										
Gray 36320	8010-01-329-6755	1		1						Constraint of Al								
	Part 1	65%	75%		10.26	154	61.98%	0.0042		1								
	Part 2	65%	75%	5	9.02	45	74.49%	0.0015										
Gray 37200	8010-01-397-3981					-						CENTERNIE		11.12.11.1				
	Part 1	65%	75%	15	9.90	148	61.11%	0.0040		10000		in methodates		TETT				
	Part 2	65%	75%			45	73.93%	0.0015				ALC: NO. OF THE OWNER.					-	
Green 14052	8010-01-362-3876			1 3							-							
and a second	Part 1	65%	75%	15	10,42	156	79.26%	0.0054								1.1.1.1.1		
	Part 2	65%	75%		8.40	42	57.85%	0.0011		1								
Green 34092	8010-01-336-3035			-	C115							10000						

# Table E-4. Weight Percent and Annual Emissions of Particulates from Each Paint

		Transfer Efficiency	PM Control Efficiency	Material Usage	Material Density	Material Usage	Solids	PM	Cobalt Compounds	Cobalt Compounds	Barium Chromate	Barium Chromate	Sodium Chromate	Sodium Chromate	Strontium Chromate	Strontium Chromate	Zinc Chromate	Zinc Chromate
Material Used	NSN	%	- %	(gal/yr)	(lbs/gal)	(lbs/yr)	wt%	(tons/year)	%	(tons/year)	56	(tons/year)	96	(tons/year)	%	(tons/year)	%	(tons/year)
	Part 1	65%		15	10.21	153	61.89%	0.0041										
	Part 2	65%	75%	5	9.62	45	73.93%	0.0015								10000		
Green 34102	8010-01-336-3036				(Charles In the later													
	Part 1	65%			10.05	151	61.49%	0.0041					1					1000
	Part 2	65%	75%	5	9.02	45	73.93%	0.0015				10000		in the second		1		
Green 24052	8010-01-305-5555				1			0.0	2									
	Part 1	65%			9.03	135	55.71%	0.0033		Acres Cardinal		distant and the		1000				
	Part 2	65%	75%	5	9,12	46	80.05%	0.0016		The state of the s								
Red 11136	8010-01-265-9139			1														
	Part 1	65%			9.47	142	72.45%	0.0045										
	Part 2	65%	75%	5	8.11	41	49.55%	0.0009						1.1		A CARLES		
White 17925	8010-01-265-9143			31000	1							Contraction of the last		in an			1	
	Part 1	65%		15	12.92	194	82.27%	0.0070						a la companya da companya d		urm in S		
	Part 2	65%	75%	5	7.92	40	42.07%	0.0007										
Enamels																		
Walk Way Black 37038	8010-00-641-0427	65%		5	10.43		52.04%	0.0012		all and the second second				CHIVON.				
Yellow 13538	8010-00-286-7758	65%		5	9.09		67.22%	0.0013		0.005473125				laten - Sur (				
Dur-A-Plex Alkyd Enamel	8010-00-515-1596	65%			10.06		68.00%	0.0015						1. 1. A.				P-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Centari 5000 Urethane	8010P700A	65%			10.17	51	65.60%	0.0015		1				THE PROPERTY			1	Note of the second
Light Gray	8010-00-141-7842	65%			10.76	54	70.07%	0.0016				and the second second						
Walk Way Dark Gull Gray	8010-00-641-0426	65%			8.14		25.00%	0.0004		1								
90-Bases/Colors Rust	8010P90BASES	65%			10.37		82.20%	0.0019										
80-Base/Clear Rust	8010P80-34	65%	75%	5	10.39	52	82.30%	0.0019										
Aerosols		0	-															
Black 37038	8010-01-331-6108	40%		5	6.29	31	51.00%	0.0012		1000	1			100-110-110-1		HILL PAULT		
Red 11105	8010-01-331-6110	40%	75%	5	6.56	33	45.20%	0.0011				CINE IN COM						
Other																		
NOX-RUST Corrosion Preventive	8030-00-231-2354	65%	75%	5	7.51	38	94.67%	0.0016				1.80					1	12 Seattle
																	-	
TOTAL				510		4960		0.1353		0.0055		0.0019	8	D.00004		0.0016		0.0000

PM is assumed to be equal to be PM10 which is assumed to be equal to PM2.5

Total Particulate HAP (pounds/year) 18.1

Type text here

# **Emission Estimates**

Permit 1777-RV1 – Four 755 HP Back-Up Generators at Space Missile Command (Bldg. 402)

Emission Unit IDs

19170, 19171, 19172, 19173

# Emissions Summary Four Emergency Generator Engines at the RSC Building 402 Unit IDs 19170, 19171, 19172, 19173

Criteria Air Pollutants	Combined Emission Rate (Ib/hr)	Controlled Annual Emissions ¹ (ton/yr)	Uncontrolled Potential Annual Emissions ² (ton/yr)
Carbon Monoxide	17.31	1.73	75.82
Nitrogen Oxides	28.30	2.83	123.94
Particulate Matter	1.00	0.10	4.37
Particulate Matter <10μm	1.00	0.10	4.37
Particulate Matter <2.5µm	1.00	0.10	4.37
Sulfur Oxides	0.04	0.004	0.16
Volatile Organic Compounds	0.40	0.04	1.75

¹ Controlled annual emissions are calculated assuming a maximum of 200 operating hours per year.

² Uncontrolled potential annual emissions are calculated assuming unlimited operation for 8760 hours per year.

# Engine Combustion Emissions Emission Calculation Spreadsheet Emergency Generator #1 at SMC (Unit ID 19170)

# Generator 755 hp engine

450 kW generator

	EPA AP-42	AP-42	Manufacturer Emission Data	NSPS Nonroad Tier 2	1	/alues for P	ermit Appl	Values for Permit Application Forms	su		
Criteria Air Poliutarits	Emission Factor ¹	n Factor ¹	Emission Factor ²	Emission Limit	Emission Limit Emission Factor ⁵ Hourly Emissions Annual Emissions ⁶	Hourly En	nissions	Annual En	lissions ⁶	PTE ⁷	Emission factor Kererence
	(lb/hp-hr) (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	g/hr	lb/hr	lb/yr	ton/yr	ton/yr	
Carbon Monoxide	5.50E-03	2.49	0.47	2.60	2.60	1963.00	4.33	865.52	0.43	18.95	NSPS Nonroad Tier 2
Nitrogen Oxides	0.024	10.89	4.25		4.25	3208.75	7.07	1414.79	0.71	30.98	30.98 Manufacturer Emission Data
Volatile Organic Compounds	7.05E-04	0.32	0.06		0.06	45.30	0.10	19.97	0.01	0.44	Manufacturer Emission Data
NO _x + NMHC	Not av	Not available	4.31	4.8	4.80	3624.00	7.99	1597.88	0.80	34.99	34.99 NSPS Nonroad Tier 2
Sulfur Oxides ⁴	1.21E-05	0.01			0.01	4.16	0.01	1.83	0.001	0.04	EPA AP-42
Particulate Matter ³	7.00E-04	0.32	0.08	0.15	0.15	113.25	0.25	49.93	0.02	1.09	NSPS Nonroad Tier 2
Confirm NOV + NMIHC / Emission I imit	NUD - Emicei	on limit	Confirmed								

Confirm NOx + NMHC < Emission Limit ---> Confirmed

The generator operates a maximum of 200 hours per year and is powered by diesel fuel

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel And All Stationary Dual-fuel Engines, Table 3.4-1 (October 1996), for generators greater than 600 hp.

AP-42 Volatile Organic Compounds conservatively assumed to be Total Organic Compounds (TOC).

² Manufacturer emission factors presented are the 3/4 Standby values on the specification sheet. These emissions values are consistent with those used in the NSPS rule certification.

³ Particulate matter emissions are considered to be < 1 µm in size. Therefore PM emissions also reflect particulate matter less than 10 µm (PM₁₀) and particulate matter less than 2.5 µm (PM_{2.8}).

⁴ SOx emission factor is the EPA AP-42 emission factor, which was used because 15ppm sulfur diesel fuel is used at Kirtland AFB and the AP-42 factor represents the maximum possible emissions via mass balance.

⁶ The emissions factors selected for the permit application are the higher of either the manufacturer emission data or the NSPS Subpart IIII emission limits.

 6  The following equation was used to calculate annual emissions for each pollutant: Annual emissions (lb/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton) Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

# Engine Combustion Emissions Emission Calculation Spreadsheet Emergency Generator #2 at SMC (Unit ID 19171)

# Generator 755 hp engine

450 kW generator

	EPA AP-42	AP-42	Manufacturer Emission Data	NSPS Nonroad Tier 2	7	alues for P	ermit Appl	Values for Permit Application Forms	us		
Criteria Air Poliutarits	Emission Factor ¹	n Factor ¹	Emission Factor ²	Emission Limit	Emission Limit Emission Factor ⁵ Hourly Emissions Annual Emissions ⁶	Hourly En	nissions	Annual En	nissions ⁶	PTE ⁷	Emission factor Keierence
	(lb/hp-hr) (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	g/hr	lb/hr	lb/yr	ton/yr	ton/yr	
Carbon Monoxide	5.50E-03	2.49	0.47	2.60	2.60	1963.00	4.33	865.52	0.43	18.95	NSPS Nonroad Tier 2
Nitrogen Oxides	0.024	10.89	4.25		4.25	3208.75	7.07	1414.79	0.71	30.98	30.98 Manufacturer Emission Data
Volatile Organic Compounds	7.05E-04	0.32	0.06		0.06	45.30	0.10	19.97	0.01	0.44	Manufacturer Emission Data
NO _x + NMHC	Not av	Not available	4.31	4.8	4.80	3624.00	7.99	1597.88	0.80	34.99	34.99 NSPS Nonroad Tier 2
Sulfur Oxides ⁴	1.21E-05	0.01			0.01	4.16	0.01	1.83	0.001	0.04	EPA AP-42
Particulate Matter ³	7.00E-04	0.32	0.08	0.15	0.15	113.25	0.25	49.93	0.02	1.09	NSPS Nonroad Tier 2
Confirm NOV + NMIHC / Emission I imit	NUD - Emissi	on limit	Confirmed								

Confirm NOx + NMHC < Emission Limit ---> Confirmed

The generator operates a maximum of 200 hours per year and is powered by diesel fuel

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel And All Stationary Dual-fuel Engines, Table 3.4-1 (October 1996), for generators greater than 600 hp.

AP-42 Volatile Organic Compounds conservatively assumed to be Total Organic Compounds (TOC).

² Manufacturer emission factors presented are the 3/4 Standby values on the specification sheet. These emissions values are consistent with those used in the NSPS rule certification.

³ Particulate matter emissions are considered to be < 1 µm in size. Therefore PM emissions also reflect particulate matter less than 10 µm (PM₁₀) and particulate matter less than 2.5 µm (PM_{2.8}).

⁴ SOx emission factor is the EPA AP-42 emission factor, which was used because 15ppm sulfur diesel fuel is used at Kirtland AFB and the AP-42 factor represents the maximum possible emissions via mass balance.

⁶ The emissions factors selected for the permit application are the higher of either the manufacturer emission data or the NSPS Subpart IIII emission limits.

 6  The following equation was used to calculate annual emissions for each pollutant: Annual emissions (lb/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton) Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

# Engine Combustion Emissions Emission Calculation Spreadsheet Emergency Generator #3 at SMC (Unit ID 19172)

# Generator 755 hp engine

450 kW generator

	EPA AP-42	AP-42	Manufacturer Emission Data	NSPS Nonroad Tier 2	7	alues for P	ermit Appl	Values for Permit Application Forms	us		
Criteria Air Poliutarits	Emission Factor ¹	n Factor ¹	Emission Factor ²	Emission Limit	Emission Limit Emission Factor ⁵ Hourly Emissions Annual Emissions ⁶	Hourly En	nissions	Annual En	nissions ⁶	PTE ⁷	Emission factor Keierence
	(lb/hp-hr) (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	g/hr	lb/hr	lb/yr	ton/yr	ton/yr	
Carbon Monoxide	5.50E-03	2.49	0.47	2.60	2.60	1963.00	4.33	865.52	0.43	18.95	NSPS Nonroad Tier 2
Nitrogen Oxides	0.024	10.89	4.25		4.25	3208.75	7.07	1414.79	0.71	30.98	30.98 Manufacturer Emission Data
Volatile Organic Compounds	7.05E-04	0.32	0.06		0.06	45.30	0.10	19.97	0.01	0.44	Manufacturer Emission Data
NO _x + NMHC	Not av	Not available	4.31	4.8	4.80	3624.00	7.99	1597.88	0.80	34.99	34.99 NSPS Nonroad Tier 2
Sulfur Oxides ⁴	1.21E-05	0.01			0.01	4.16	0.01	1.83	0.001	0.04	EPA AP-42
Particulate Matter ³	7.00E-04	0.32	0.08	0.15	0.15	113.25	0.25	49.93	0.02	1.09	NSPS Nonroad Tier 2
Confirm NOV + NMIHC / Emission I imit	NUD - Emissi	on limit	Confirmed								

Confirm NOx + NMHC < Emission Limit ---> Confirmed

The generator operates a maximum of 200 hours per year and is powered by diesel fuel

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel And All Stationary Dual-fuel Engines, Table 3.4-1 (October 1996), for generators greater than 600 hp.

AP-42 Volatile Organic Compounds conservatively assumed to be Total Organic Compounds (TOC).

² Manufacturer emission factors presented are the 3/4 Standby values on the specification sheet. These emissions values are consistent with those used in the NSPS rule certification.

³ Particulate matter emissions are considered to be < 1 µm in size. Therefore PM emissions also reflect particulate matter less than 10 µm (PM₁₀) and particulate matter less than 2.5 µm (PM_{2.8}).

⁴ SOx emission factor is the EPA AP-42 emission factor, which was used because 15ppm sulfur diesel fuel is used at Kirtland AFB and the AP-42 factor represents the maximum possible emissions via mass balance.

⁶ The emissions factors selected for the permit application are the higher of either the manufacturer emission data or the NSPS Subpart IIII emission limits.

 6  The following equation was used to calculate annual emissions for each pollutant: Annual emissions (lb/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton) Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

# Engine Combustion Emissions Emission Calculation Spreadsheet Emergency Generator #4 at SMC (Unit ID 19173)

# Generator 755 hp engine

450 kW generator

	EPA AP-42	AP-42	Manufacturer Emission Data	NSPS Nonroad Tier 2	7	alues for P	ermit Appl	Values for Permit Application Forms	us		
Criteria Air Poliutarits	Emission Factor ¹	n Factor ¹	Emission Factor ²	Emission Limit	Emission Limit Emission Factor ⁵ Hourly Emissions Annual Emissions ⁶	Hourly En	nissions	Annual En	nissions ⁶	PTE ⁷	Emission factor Keierence
	(lb/hp-hr) (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	g/hr	lb/hr	lb/yr	ton/yr	ton/yr	
Carbon Monoxide	5.50E-03	2.49	0.47	2.60	2.60	1963.00	4.33	865.52	0.43	18.95	NSPS Nonroad Tier 2
Nitrogen Oxides	0.024	10.89	4.25		4.25	3208.75	7.07	1414.79	0.71	30.98	30.98 Manufacturer Emission Data
Volatile Organic Compounds	7.05E-04	0.32	0.06		0.06	45.30	0.10	19.97	0.01	0.44	Manufacturer Emission Data
NO _x + NMHC	Not av	Not available	4.31	4.8	4.80	3624.00	7.99	1597.88	0.80	34.99	34.99 NSPS Nonroad Tier 2
Sulfur Oxides ⁴	1.21E-05	0.01			0.01	4.16	0.01	1.83	0.001	0.04	EPA AP-42
Particulate Matter ³	7.00E-04	0.32	0.08	0.15	0.15	113.25	0.25	49.93	0.02	1.09	NSPS Nonroad Tier 2
Confirm NOV + NMIHC / Emission I imit	NUD - Emissi	on limit	Confirmed								

Confirm NOx + NMHC < Emission Limit ---> Confirmed

The generator operates a maximum of 200 hours per year and is powered by diesel fuel

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel And All Stationary Dual-fuel Engines, Table 3.4-1 (October 1996), for generators greater than 600 hp.

AP-42 Volatile Organic Compounds conservatively assumed to be Total Organic Compounds (TOC).

² Manufacturer emission factors presented are the 3/4 Standby values on the specification sheet. These emissions values are consistent with those used in the NSPS rule certification.

³ Particulate matter emissions are considered to be < 1 µm in size. Therefore PM emissions also reflect particulate matter less than 10 µm (PM₁₀) and particulate matter less than 2.5 µm (PM_{2.8}).

⁴ SOx emission factor is the EPA AP-42 emission factor, which was used because 15ppm sulfur diesel fuel is used at Kirtland AFB and the AP-42 factor represents the maximum possible emissions via mass balance.

⁶ The emissions factors selected for the permit application are the higher of either the manufacturer emission data or the NSPS Subpart IIII emission limits.

 6  The following equation was used to calculate annual emissions for each pollutant: Annual emissions (lb/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton) Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

# **Emission Estimates**

# Permit 1786-M5 – Water Plant Generators

Emission Unit IDs

19147, 19148, 19174, 19178, 19153, 19089, 19133, 19131, 19132, 19134, 19181, 19182

# Summary of Emissions for the Kirtland AFB Water Plant

				Hourly Emissions (Ib/hr)	(Ib/hr)			
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10μm	Particulate Matter <2.5μm
-	Emergency Generator, Pump Station, Bldg 20436, Unit ID 19147	4.94	18.60	0.52	0.97	0.58	0.58	0.58
2	Emergency Generator, Well #3, Bldg 23900, Unit ID 19148	3.91	18.17	1.44	1.19	1.28	1.28	1.28
3	Well Shaft Engine, Well #15, Bldg 900, Unit ID 19103	3.22	8.33	1.52	0.0035	0.060	0.060	0.060
4	Emergency Generator, Well #15, Bldg 900, Unit ID 19145	1.48	1.72	0.075	0.00023	0.0040	0.0040	0.0040
5	Well Shaft Engine, Well #16, Bldg 25952, Unit ID 19104	3.22	8.33	1.52	0.0035	0.060	0.060	0.060
Q	Emergency Generator, Well #16, Bldg 25952, Unit ID 19146	1.48	1.72	0.075	0.00023	0.0040	0.0040	0.0040
7	Emergency Generator, Well #20, Unit ID 19153	4.34	7.94 (NMHC+NOx)	0.00 (included in NMHC+NOx)	0.0092	0.25	0.25	0.25
8	Emergency Generator, Bldg 20305, Unit ID 19089	2.61	12.09	96.0	0.80	0.86	0.86	0.86
6	Emergency Generator, Well #14, Bldg 1014, Unit ID 19133	4.15	18.12	0.53	0.97	0.53	0.53	0.53
10	Emergency Generator, Gibson, Bldg 20183, Unit ID 19131	1.14	5.27	0.42	0.35	0.37	0.37	0.37
11	Emergency Generator, Manzano, Bldg 30110, Unit ID 19132	1.85	8.59	0.68	0.57	0.61	0.61	0.61
12	Emergency Generator, Bldg 20550, Unit ID 19134	2.91	13.49	1.07	0.89	0.96	0.96	0.96
	Total	35.26	122.36	8.82	5.75	5.56	5.56	5.56

Note: NMHC+NOx is non-methane hydrocarbons (i.e. volatile organic compounds) and nitrogen oxides combined.

# Summary of Emissions for the Kirtland AFB Water Plant

				Annual Emissions (ton/yr)	(ton/yr)				
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10μm	Particulate Matter <2.5μm	Hazardous Air Pollutants
-	Emergency Generator, Pump Station, Bldg 20436, Unit ID 19147	0.49	1.86	0.052	0.10	0.058	0.058	0.058	
2	Emergency Generator, Well #3, Bldg 23900, Unit ID 19148	0.39	1.82	0.14	0.12	0.13	0.13	0.13	
3	Well Shaft Engine, Well #15, Bldg 900, Unit ID 19103	2.70	7.05	1.27	0.0030	0.051	0.051	0.051	0.37
4	Emergency Generator, Well #15, Bldg 900, Unit ID 19145	0.15	0.17	0.0075	0.000023	0.00040	0.00040	0.00040	
5	Well Shaft Engine, Well #16, Bldg 25952, Unit ID 19104	2.70	7.05	1.27	0.0030	0.051	0.051	0.051	0.37
9	Emergency Generator, Well #16, Bldg 25952, Unit ID 19146	0.15	0.17	0.0075	0.000023	0.00040	0.00040	0.00040	
7	Emergency Generator, Well #20, Unit ID 19153	0.43	0.79 (NMHC+NOx)	0.00 (included in NMHC+NOx)	0.00092	0.025	0.025	0.025	
8	Emergency Generator, Bldg 20305, Unit ID 19089	0.26	1.21	0.096	0.080	0.086	0.086	0.086	
6	Emergency Generator, Well #14, Bldg 1014, Unit ID 19133	0.42	1.81	0.053	0.097	0.053	0.053	0.053	
10	Emergency Generator, Gibson, Bldg 20183, Unit ID 19131	0.11	0.53	0.042	0.035	0.037	0.037	0.037	
11	Emergency Generator, Manzano, Bldg 30110, Unit ID 19132	0.19	0.86	0.068	0.057	0.061	0.061	0.061	
12	Emergency Generator, Bldg 20550, Unit ID 19134	0.29	1.35	0.11	0.089	0.10	0.10	0.10	
	Total 8.27	8.27	24.68	3.12	0.58	0.65	0.65	0.65	0.74

Note: NMHC+NOx is non-methane hydrocarbons (i.e. volatile organic compounds) and nitrogen oxides combined.

Summary of Emissions for the Kirtland AFB Water Plant

				Potential Emissions (ton/yr)	s (ton/yr)			
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10μm	Particulate Matter <2.5μm
Ł	Emergency Generator, Pump Station, Bldg 20436, Unit ID 19147	21.64	81.48	2.29	4.23	2.55	2.55	2.55
2	Emergency Generator, Well #3, Bldg 23900, Unit ID 19148	17.14	79.57	6.32	5.23	5.59	5.59	5.59
3	Well Shaft Engine, Well #15, Bldg 900, Unit ID 19103	14.12	36.46	6.64	0.016	0.26	0.26	0.26
4	Emergency Generator, Well #15, Bldg 900, Unit ID 19145	6.50	7.54	0.33	0.0010	0.017	0.017	0.017
5	Well Shaft Engine, Well #16, Bldg 25952, Unit ID 19104	14.12	36.46	6.64	0.016	0.26	0.26	0.26
9	Emergency Generator, Well #16, Bldg 25952, Unit ID 19146	6.50	7.54	0.33	0.0010	0.017	0.017	0.017
7	Emergency Generator, Well #20, Unit ID 19153	19.03	34.79 (NMHC+NOx)	0.00 (included in NMHC+NOx)	0.040	1.09	1.09	1.09
ω	Emergency Generator, Bldg 20305, Unit ID 19089	11.41	52.95	4.22	3.50	3.76	3.76	3.76
6	Emergency Generator, Well #14, Bldg 1014, Unit ID 19133	18.19	79.37	2.33	4.23	2.31	2.31	2.31
10	Emergency Generator, Gibson, Bldg 20183, Unit ID 19131	4.97	23.08	1.84	1.53	1.64	1.64	1.64
11	Emergency Generator, Manzano, Bldg 30110, Unit ID 19132	8.10	37.61	3.00	2.49	2.67	2.67	2.67
12	Emergency Generator, Bldg 20550, Unit ID 19134	12.73	59.06	4.71	3.91	4.19	4.19	4.19
	Total	154.45	535.93	38.65	25.18	24.36	24.36	24.36
		chone (i o violo		e organic compounde) and nitrogen ovides combined				

Note: NMHC+NOx is non-methane hydrocarbons (i.e. volatile organic compounds) and nitrogen oxides combined.

### Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Building 20436, Pump Station (Unit ID 19147) Process Equipment Unit No. 1

#### Generator 755 hp

Criteria Air Pollutants	Worst-Case Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF (Sheet 2)	4.94	0.49	21.64
Nitrogen Oxides	AP-42 EF (Sheet 2)	18.60	1.86	81.48
Particulate Matter ⁵	AP-42 EF (Sheet 2)	0.58	0.058	2.55
Particulate Matter <10μm	AP-42 EF (Sheet 2)	0.58	0.058	2.55
Particulate Matter <2.5µm	AP-42 EF (Sheet 2)	0.58	0.058	2.55
Sulfur Oxides	Manufacturer EF (Sheet 1)	0.97	0.10	4.23
Volatile Organic Compounds	AP-42 EF (Sheet 2)	0.52	0.052	2.29

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Worst-Case Data Source Explanations:

Manufacturer EF (Sheet 1): Emission calculations were performed using Manufacturer Emission Factors. AP-42 EF (Sheet 2): Emission calculations were performed using AP-42 Emission Factors.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year. Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

### Sheet 1 - Manufacturer Emission Factors **Emission Calculation Spreadsheet** Emergency Generator at Building 20436, Pump Station (Unit ID 19147) Process Equipment Unit No. 1

#### Generator 755 hp

Criteria Air Pollutants	Manufacturer Emission Factors (g/hp-hr)	Hourly Emissions ¹ (Ib/hr)	Annual Emissions ² (ton/yr)	PTE ³ (ton/yr)
Carbon Monoxide	1.27	2.11	0.21	9.26
Nitrogen Oxides	9.85	16.39	1.64	71.81
Particulate Matter	0.12	0.20	0.020	0.87
Particulate Matter <10µm ⁴	0.12	0.20	0.020	0.87
Particulate Matter <2.5µm ⁴	0.12	0.20	0.020	0.87
Sulfur Oxides	0.58	0.97	0.10	4.23
Volatile Organic Compounds	0.20	0.33	0.033	1.46

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / (453.6 g/lb) where: EF = Emission Factor

hp = horsepower

² The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * (200 hr/yr) / (2000 lb/ton)

³ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

⁴ Manufacturer exhaust emission data given for Particulate Matter (PM). Assumed PM emissions equal Particulate Matter <10µm and Particulate Matter <2.5µm emissions.

### Sheet 2 - AP-42 Emission Factors Emission Calculation Spreadsheet Emergency Generator at Building 20436, Pump Station (Unit ID 19147) Process Equipment Unit No. 1

#### Generator 755 hp

755 11

Criteria Air Pollutants	AP-42 Emission Factors ¹ (lb/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.85	42.4	137000	4.94	0.49	21.64
Nitrogen Oxides	3.2	42.4	137000	18.60	1.86	81.48
Particulate Matter	0.1	42.4	137000	0.58	0.058	2.55
Particulate Matter <10µm ⁷	0.1	42.4	137000	0.58	0.058	2.55
Particulate Matter <2.5µm ⁸	0.1	42.4	137000	0.58	0.058	2.55
Sulfur Oxides ⁹	0.0015	42.4	137000	0.0088	0.00088	0.039
Volatile Organic Compounds ¹⁰	0.09	42.4	137000	0.52	0.052	2.29

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel and all Stationary Dual-fuel Engines, Table 3.4-1 (October 1996).

² The following equation was used to calculate hourly fuel use:

Hourly fuel use = hp * Brake specific fuel consumption tested value (7700 Btu/hp-hr) / HV (Btu/gal)

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/lb.

⁴ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000

where: EF = Emission Factor HV = Heating Value

⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * (200 hr/yr) / (2000 lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

 7,8  Assume Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

⁹ The following equation was used to calculate the sulfur oxides emission factor: Sulfur oxides emission factor = 1.01 * S where: S = Percent sulfur in diesel fuel (0.0015%, Kirtland AFB standard)

¹⁰ Volatile Organic Compounds assumed to be Total Organic Compounds (TOC).

### Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Building 23900, Well #3 (Unit ID 19148) Process Equipment Unit No. 4

#### Generator

#### 535 hp

Criteria Air Pollutants	Worst-Case Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF (Sheet 2)	3.91	0.39	17.14
Nitrogen Oxides	AP-42 EF (Sheet 2)	18.17	1.82	79.57
Particulate Matter ⁵	AP-42 EF (Sheet 2)	1.28	0.13	5.59
Particulate Matter <10µm	AP-42 EF (Sheet 2)	1.28	0.13	5.59
Particulate Matter <2.5µm	AP-42 EF (Sheet 2)	1.28	0.13	5.59
Sulfur Oxides	AP-42 EF (Sheet 2)	1.19	0.12	5.23
Volatile Organic Compounds	AP-42 EF (Sheet 2)	1.44	0.14	6.32

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission Factor Source Explanations:

Manufacturer EF (Sheet 1): Emission calculations were performed using Manufacturer Emission Factors. AP-42 EF (Sheet 2): Emission calculations were performed using AP-42 Emission Factors.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year. Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

### Sheet 1 - Manufacturer Emission Factors **Emission Calculation Spreadsheet** Emergency Generator at Building 23900, Well #3 (Unit ID 19148) Process Equipment Unit No. 4

#### Generator 535 hp

Criteria Air Pollutants	Manufacturer Emission Factors (g/hp-hr)	Hourly Emissions ¹ (Ib/hr)	Annual Emissions ² (ton/yr)	PTE ³ (ton/yr)
Carbon Monoxide	2.25	2.65	0.27	11.62
Nitrogen Oxides	9.25	10.91	1.09	47.79
Particulate Matter	0.17	0.20	0.020	0.88
Particulate Matter <10µm ⁴	0.17	0.20	0.020	0.88
Particulate Matter <2.5µm ⁴	0.17	0.20	0.020	0.88
Sulfur Oxides	0.59	0.70	0.070	3.05
Volatile Organic Compounds	0.30	0.35	0.035	1.55

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / (453.6 g/lb)

where: EF = Emission Factor

hp = horsepower

² The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * (200 hr/yr) / (2000 lb/ton)

³ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

⁴ Manufacturer exhaust emission data given for Particulate Matter (PM). Assumed PM emissions equal Particulate Matter <10µm and Particulate Matter <2.5µm emissions.

### Sheet 2 - AP-42 Emission Factors **Emission Calculation Spreadsheet** Emergency Generator at Building 23900, Well #3 (Unit ID 19148) Process Equipment Unit No. 4

#### Generator 535 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.95	30.1	137000	3.91	0.39	17.14
Nitrogen Oxides	4.41	30.1	137000	18.17	1.82	79.57
Particulate Matter	0.31	30.1	137000	1.28	0.13	5.59
Particulate Matter <10µm ⁷	0.31	30.1	137000	1.28	0.13	5.59
Particulate Matter <2.5µm ⁸	0.31	30.1	137000	1.28	0.13	5.59
Sulfur Oxides	0.29	30.1	137000	1.19	0.12	5.23
Volatile Organic Compounds9	0.35	30.1	137000	1.44	0.14	6.32

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² The following equation was used to calculate hourly fuel use:

Hourly fuel use = hp * Brake specific fuel consumption tested value (7700 Btu/hp-hr) / HV (Btu/gal)

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/lb.

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor

HV = Heating Value

⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * (200 hr/yr) / (2000 lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

 7,8  Assume Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

⁹ Volatile Organic Compounds assumed to be the exhaust portion of Total Organic Compounds (TOC).

# Emission Calculation Spreadsheet 750 KW Emergency Generator at KAFB Well #15 (Unit 19174)

# Generator 1220 hp engine 750 kW generator

Criteria Air Pollutants	EPA	AP-42	Manufacturer Emission Data	NSPS Nonroad Tier 2 <u>limits</u>	Values for Permit		Permit App	Application Forms			Emission Factor Reference		
Criteria Air Poliutants	Emissio	n Factor ¹	Emission Factor ²	Emission Limit	Emission Factor	Hourly Emissions		Hourly Emissions		Annual E	Annual Emissions ⁵		Emission Factor Reference
	(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	g/hr	lb/hr	lb/yr	lb/yr ton/yr		1		
Carbon Monoxide	5.50E-03	2.49	0.28	2.60	2.60	3172.0	7.0	1398.6	0.70	30.6	NSPS Nonroad Tier 2 limits		
Nitrogen Oxides ⁷	0.024	10.89	5.87	-	4.68	5709.6	12.6	2517.5	1.3	55.1	NSPS Nonroad Tier 2		
Particulate Matter ³	7.00E-04	0.32	0.05	0.15	0.15	183.0	0.40	80.7	0.040	1.8	NSPS Nonroad Tier 2 limits		
Sulfur Oxides ⁴	1.21E-05	0.00551	0.12	-	0.12	146.4	0.32	64.6	0.032	1.4	Manufacturer Emission Data		
Volatile Organic Compounds ⁷	7.05E-04	0.32	0.12	-	0.12	146.4	0.32	64.6	0.032	1.4	NSPS Nonroad Tier 2		
NO _x + NMHC	Not av	vailable	Not available	4.8	4.80	5856.0	12.9	2582.0	1.29	56.5	NSPS Nonroad Tier 2 limits		

The generator operates a maximum of 200 hours per year and must be powered by ultra low sulfur (ULS) diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.4 Large Diesel Stationary Diesel..... Engines, Table 3.4-1 (October 1996), for generators greater than 600 hp. AP-42 Volatile Organic Compounds conservatively assumed to be Total Organic Compounds (TOC).

² Manufacturer emission factors for SOx and hydrocarbons (HCs including TOC/VOC/NMHC) are Full Standby values from Cummins eds-1087c Exhaust Emissions Data Sheet. The other factors are NSPS IIII based EPA Emission Limits that Cummins provides in spec. sheet epa-1121j.

³ Particulate matter emissions are considered to be < 10µm in size. Therefore PM emissions also reflect particulate matter less than 10 µm (PM) and particulate matter less than 2.5 µm (PM_2).

⁴ SOx emission factor is the maximum value of the manufacturer emission factor and the EPA AP-42 emission factor, as specified by the AEHD NSPS generator application form.

⁵ The following equation was used to calculate annual emissions for each pollutant:

Annual emissions (lb/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potantial to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (tonlyr) = Hourly emissions (lb/rt) * 8760 (trst)yr) / 2000 (lb/ton)

## Emission Calculation Spreadsheet 750kW Emergency Generator at Water Plant Facility Well #16 (Unit 19178)

#### Generator 1220 hp engine

750 kW generator

Criteria Air Pollutants	EPA	AP-42	Manufacturer Emission Data	NSPS Nonroad Tier 2	v	/alues for Permit Application Forms			Emission Factor Reference				
Criteria Air Poliutants	Emissio	n Factor ¹	Emission Factor ²	Emission Limit	Emission Factor	Hourly Emissions		Hourly Emissions		Annual E	Annual Emissions ⁵		Emission Factor Reference
	(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	g/hr	lb/hr	lb/yr	lb/yr ton/yr				
Carbon Monoxide	5.50E-03	2.49	0.19	2.60	2.60	3172.00	6.99	1398.59	0.70	30.63	NSPS Nonroad Tier 2		
Nitrogen Oxides	0.024	10.89	4.15		4.15	5063.00	11.16	2232.36	1.12	48.89	Manufacturer Emission Data		
Particulate Matter ³	7.00E-04	0.32	0.05	0.15	0.15	183.00	0.40	80.69	0.040	1.77	NSPS Nonroad Tier 2		
Sulfur Oxides ⁴	1.21E-05	0.01	0.12	-	0.12	146.40	0.32	64.55	0.032	1.41	Manufacturer Emission Data		
Volatile Organic Compounds	7.05E-04	0.32	0.19		0.19	231.80	0.51	102.20	0.051	2.24	Manufacturer Emission Data		
NO _x + NMHC	Not av	ailable		4.8	4.80	5856.00	12.91	2582.01	1.291	56.55	NSPS Nonroad Tier 2		

The generator operates a maximum of **200** hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel Engines, Table 3.4-1 (October 1996), for generators greater than 600 hp.

² Manufacturer emission factors presented are the 3/4 Standby values on the specification sheet. According to the manufacturer, the 3/4 Standby values are the most accurate.

³ Particulate matter emissions are considered to be < 1 µm in size. Therefore PM emissions also reflect particulate matter less than 10 µm (PM₁₀) and particulate matter less than 2.5 µm (PM_{2.5}).

⁴ SOx emission factor is the maximum value of the manufacturer emission factor and the EPA AP-42 emission factor, as specified by the AEHD NSPS generator application form.

⁵ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (lb/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

### Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Well #20 (Unit ID 19153) Process Equipment Unit No. 9

#### Generator

#### 755 hp

Criteria Air Pollutants	Worst-Case Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE⁴ (ton/yr)
Carbon Monoxide	NSPS IIII, Emission Standards (Sheet 3)	4.34	0.43	19.03
Nitrogen Oxides	See Non-methane Hydrocarbons and Nitrogen Oxides.			
Particulate Matter	NSPS IIII, Emission Standards (Sheet 3)	0.25	0.025	1.09
Particulate Matter <10µm	NSPS IIII, Emission Standards (Sheet 3)	0.25	0.025	1.09
Particulate Matter <2.5µm	NSPS IIII, Emission Standards (Sheet 3)	0.25	0.025	1.09
Sulfur Oxides	AP-42 EF (Sheet 2)	0.0092	0.00092	0.040
Volatile Organic Compounds	See Non-methane Hydrocarbons and Nitrogen Oxides.			
Non-methane Hydrocarbons and Nitrogen Oxides	NSPS IIII, Emission Standards (Sheet 3)	7.94	0.79	34.79

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Worst-Case Data Source Explanations:

See Non-methane Hydrocarbons and Nitrogen Oxides.: Emissions from non-methane hydrocarbons are treated as volatile organic compounds

and combined with emissions from nitrogen oxides per the 40 CFR 60 Subpart IIII standard. *AP-42 EF (Sheet 2)*: Emission calculations were performed using AP-42 Emission Factors.

NSPS IIII, Emission Standards (Sheet 3): Emission calculations were performed using NSPS Subpart IIII Emission Factors for emergency-use diesel engines with <10 l/cyl displacement.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year.

Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

⁵ This generator is subject to 40 CFR Part 60 Subpart IIII, Standards of Performance for Stationary Compression Ignition Engines.

### Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet Emergency Generator at Well #20 (Unit ID 19153) Process Equipment Unit No. 9

#### Generator 755 hp

Criteria Air Pollutants	Manufacturer Emission Factors (g/hp-hr)	Hourly Emissions ¹ (Ib/hr)	Annual Emissions ² (ton/yr)	PTE ³ (ton/yr)			
Carbon Monoxide	0.31	0.52	0.05	2.26			
Nitrogen Oxides	4.85	8.07	0.81	35.36			
Particulate Matter	0.05	0.083	0.0083	0.36			
Particulate Matter <10µm ⁴	0.05	0.083	0.0083	0.36			
Particulate Matter <2.5µm ⁴	0.05	0.083	0.0083	0.36			
Sulfur Oxides	Manufac	Manufacturer Emission Factor Not Available					
Volatile Organic Compounds	0.11	0.18	0.018	0.80			

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / (453.6 g/lb) where: EF = Emission Factor, for full standby operation, as provided by the manufacturer hp = horsepower

² The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * (200 hr/yr) / (2000 lb/ton)

³ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

 4  Manufacturer exhaust emission data given for Particulate Matter (PM). Assumed Particulate Matter <10  $\mu m$  and Particulate Matter <2.5  $\mu m$  emissions were equal to PM emissions.

### Sheet 2 - AP-42 Emission Factors Emission Calculation Spreadsheet Emergency Generator at Well #20 (Unit ID 19153) Process Equipment Unit No. 9

#### Generator 755 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (lb/hp-hr)	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	0.0055	4.15	0.42	18.19
Nitrogen Oxides	0.024	18.12	1.81	79.37
Particulate Matter	0.0007	0.53	0.053	2.31
Particulate Matter <10µm ⁵	0.0007	0.53	0.053	2.31
Particulate Matter <2.5µm ⁶	0.0007	0.53	0.053	2.31
Sulfur Oxides ⁷	1.21E-05	0.0092	0.00092	0.040
Volatile Organic Compounds ⁸	7.05E-04	0.53	0.053	2.33

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel and all Stationary Dual-fuel Engines, Table 3.4-1 (October 1996).

² The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (lb/hp-hr) * hp where: EF = Emission Factor

hp = horse power

 3  The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * (200 hr/yr) / (2000 lb/ton)

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

 $^{5.6}$  Assumed Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

⁷ The following equation was used to calculate the sulfur oxides emission factor: Sulfur oxides emission factor = 8.09 E-03 * S where: S = Percent sulfur in diesel fuel (0.0015%, Kirtland AFB standard)

⁸ Volatile Organic Compounds assumed to be Total Organic Compounds (TOC).

### Sheet 3 - NSPS Emission Factors **Emission Calculation Spreadsheet** Emergency Generator at Well #20 (Unit ID 19153) Process Equipment Unit No. 9

#### Generator 755 hp

Criteria Air Pollutants	NSPS IIII Emission Standards (g/hp-hr)	Hourly Emissions ¹ (Ib/hr)	Annual Emissions ² (ton/yr)	PTE ³ (ton/yr)
Carbon Monoxide	2.61	4.34	0.43	19.03
Nitrogen Oxides	es Emission Standard Not Sp			
Particulate Matter	0.15	0.25	0.025	1.09
Particulate Matter <10µm ⁴	0.15	0.25	0.025	1.09
Particulate Matter <2.5µm ⁴	0.15	0.25	0.025	1.09
Sulfur Oxides Volatile Organic Compounds	En	nission Standard	Not Specified	
Non-methane Hydrocarbons and Nitrogen Oxides	4.77	7.94	0.79	34.79

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / (453.6 g/lb) where: EF = Emission Factor

hp = horsepower

² The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * (200 hr/yr) / (2000 lb/ton)

³ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

 4  Assumed Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

## AP-42 Emission Factors Emission Calculation Spreadsheet Emergency Generator at Bldg 20305 (Unit ID 19089) Process Equipment Unit No. 8

## Generator

**390** hp¹

Criteria Air Pollutants	AP-42 Emission Factors ² (Ib/hp-hr)	Hourly Emissions ³ (lb/hr)	Annual Emissions ⁴ (ton/yr)	PTE⁵ (ton/yr)
Carbon Monoxide	6.68E-03	2.61	0.26	11.41
Nitrogen Oxides	0.031	12.09	1.21	52.95
Particulate Matter ⁶	2.20E-03	0.86	0.086	3.76
Particulate Matter <10µm ⁷	2.20E-03	0.86	0.086	3.76
Particulate Matter <2.5μm ⁷	2.20E-03	0.86	0.086	3.76
Sulfur Oxides	2.05E-03	0.80	0.080	3.50
Volatile Organic Compounds ⁸	2.47E-03	0.96	0.096	4.22

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ The engine nameplate indicates two "Advertised HP", 340 and 390, at 1500 and 1800 RPM respectively. For emission estimation purposes, it is assumed that the engine is operated at 1800 RPM, and 390 hp was used.

² Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

³ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (lb/hp-hr) * hp

where: EF = Emission Factor hp = horse power

⁴ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁵ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

^{6,7} AP-42 emission data given for Particulate Matter (PM). Assumed Particulate Matter <10μm and Particulate Matter <2.5μm emissions were equal to PM emissions.</p>

⁸ Volatile Organic Compounds assumed to be the exhaust portion of Total Organic Compounds (TOC).

### Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Bldg 1014 (Unit ID 19133) Process Equipment Unit No. 11

### Generator

## 755 hp

Criteria Air Pollutants	Worst-Case Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF (Sheet 2)	4.15	0.42	18.19
Nitrogen Oxides	AP-42 EF (Sheet 2)	18.12	1.81	79.37
Particulate Matter	AP-42 EF (Sheet 2)	0.53	0.053	2.31
Particulate Matter <10µm	AP-42 EF (Sheet 2)	0.53	0.053	2.31
Particulate Matter <2.5µm	AP-42 EF (Sheet 2)	0.53	0.053	2.31
Sulfur Oxides	Manufacturer EF (Sheet 1)	0.97	0.10	4.23
Volatile Organic Compounds	AP-42 EF (Sheet 2)	0.53	0.053	2.33

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Worst-Case Data Source Explanations:

Manufacturer EF (Sheet 1): Emission calculations were performed using Manufacturer Emission Factors AP-42 EF (Sheet 2): Emission calculations were performed using AP-42 Emission Factors.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year.

Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

### Sheet 1 - Manufacturer Emission Factors **Emission Calculation Spreadsheet** Emergency Generator at Bldg 1014 (Unit ID 19133) Process Equipment Unit No. 11

#### Generator 755 hp

Criteria Air Pollutants	Manufacturer Emission Factors (g/hp-hr)	Hourly Emissions ¹ (lb/hr)	Annual Emissions ² (ton/yr)	PTE ³ (ton/yr)
Carbon Monoxide	1.27	2.11	0.21	9.26
Nitrogen Oxides	9.85	16.40	1.64	71.81
Particulate Matter	0.12	0.20	0.020	0.87
Particulate Matter <10µm ⁴	0.12	0.20	0.020	0.87
Particulate Matter <2.5µm ⁴	0.12	0.20	0.020	0.87
Sulfur Oxides	0.58	0.97	0.10	4.23
Volatile Organic Compounds	0.20	0.33	0.033	1.46

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / (453.5924 g/lb) where: EF = Emission Factor

hp = horsepower

² The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

³ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

⁴ Manufacturer exhaust emission data given for Particulate Matter (PM). Assumed Particulate Matter <10  $\mu m$  and Particulate Matter <2.5  $\mu m$  emissions were equal to PM emissions.

### Sheet 2 - AP-42 Emission Factors Emission Calculation Spreadsheet Emergency Generator at Bldg 1014 (Unit ID 19133) Process Equipment Unit No. 11

#### Generator 755 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (lb/hp-hr)	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	5.50E-03	4.15	0.42	18.19
Nitrogen Oxides	0.024	18.12	1.81	79.37
Particulate Matter	0.0007	0.53	0.053	2.31
Particulate Matter <10µm ⁵	0.0007	0.53	0.053	2.31
Particulate Matter <2.5µm ⁶	0.0007	0.53	0.053	2.31
Sulfur Oxides ⁷	1.21E-05	0.0092	0.00092	0.040
Volatile Organic Compounds ⁸	7.05E-04	0.53	0.053	2.33

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel and all Stationary Dual-fuel Engines, Table 3.4-1 (October 1996).

² The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (lb/hp-hr) * hp where: EF = Emission Factor

hp = horse power

 3  The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

 $^{5.6}$  AP-42 emission data given for Particulate Matter (PM). Assumed Particulate Matter <10  $\mu m$  and Particulate Matter <2.5  $\mu m$  emissions were equal to PM emissions.

⁷ The following equation was used to calculate the sulfur oxides emission factor: Sulfur oxides emission factor = 8.09 E-03 * S where: S = Percent sulfur in diesel fuel (0.0015%, Kirtland AFB standard)

⁸ Volatile Organic Compounds assumed to be Total Organic Compounds (TOC).

### Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Bldg 20183 (Unit ID 19131) Process Equipment Unit No. 12

### Generator

## 170 hp

Criteria Air Pollutants	Worst-Case Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF (Sheet 2)	1.14	0.11	4.97
Nitrogen Oxides	AP-42 EF (Sheet 2)	5.27	0.53	23.08
Particulate Matter	AP-42 EF (Sheet 2)	0.37	0.037	1.64
Particulate Matter <10µm	AP-42 EF (Sheet 2)	0.37	0.037	1.64
Particulate Matter <2.5µm	AP-42 EF (Sheet 2)	0.37	0.037	1.64
Sulfur Oxides	AP-42 EF (Sheet 2)	0.35	0.035	1.53
Volatile Organic Compounds	AP-42 EF (Sheet 2)	0.42	0.042	1.84

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Worst-Case Data Source Explanations:

AP-42 EF (Sheet 2): Emission calculations were performed using AP-42 Emission Factors. Manufacturer Emission Factors were not available for this unit.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year.

Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet Emergency Generator at Bldg 20183 (Unit ID 19131) Process Equipment Unit No. 12

Manufacturer Specifications Not Available

### Sheet 2 - AP-42 Emission Factors Emission Calculation Spreadsheet Emergency Generator at Bldg 20183 (Unit ID 19131) Process Equipment Unit No. 12

#### Generator 170 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/hp-hr)	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	6.68E-03	1.14	0.11	4.97
Nitrogen Oxides	0.031	5.27	0.53	23.08
Particulate Matter ⁵	2.20E-03	0.37	0.037	1.64
Particulate Matter <10µm ⁶	2.20E-03	0.37	0.037	1.64
Particulate Matter <2.5µm ⁶	2.20E-03	0.37	0.037	1.64
Sulfur Oxides	2.05E-03	0.35	0.035	1.53
Volatile Organic Compounds ⁷	2.47E-03	0.42	0.042	1.84

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² The following equation was used to calculate hourly emissions for each pollutant:

- Hourly emissions (lb/hr) = EF (lb/hp-hr) * hp where: EF = Emission Factor
  - hp = horse power

 3  The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

 $^{5.6}$  AP-42 emission data given for Particulate Matter (PM). Assumed Particulate Matter <10  $\mu m$  and Particulate Matter <2.5  $\mu m$  emissions were equal to PM emissions.

⁷ Volatile Organic Compounds assumed to be the exhaust portion of Total Organic Compounds (TOC).

### Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Bldg 30110 (Unit ID 19132) Process Equipment Unit No. 13

### Generator

## 277 hp

Criteria Air Pollutants	Worst-Case Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF (Sheet 2)	1.85	0.19	8.10
Nitrogen Oxides	AP-42 EF (Sheet 2)	8.59	0.86	37.61
Particulate Matter	AP-42 EF (Sheet 2)	0.61	0.061	2.67
Particulate Matter <10µm	AP-42 EF (Sheet 2)	0.61	0.061	2.67
Particulate Matter <2.5µm	AP-42 EF (Sheet 2)	0.61	0.061	2.67
Sulfur Oxides	AP-42 EF (Sheet 2)	0.57	0.057	2.49
Volatile Organic Compounds	AP-42 EF (Sheet 2)	0.68	0.068	3.00

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Worst-Case Data Source Explanations:

AP-42 EF (Sheet 2): Emission calculations were performed using AP-42 Emission Factors. Manufacturer Emission Factors were not available for this unit.

 $^{\rm 2}$  Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year.

Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet Emergency Generator at Bldg 30110 (Unit ID 19132) Process Equipment Unit No. 13

Manufacturer Specifications Not Available

### Sheet 2 - AP-42 Emission Factors Emission Calculation Spreadsheet Emergency Generator at Bldg 30110 (Unit ID 19132) Process Equipment Unit No. 13

#### Generator 277 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/hp-hr)	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	6.68E-03	1.85	0.19	8.10
Nitrogen Oxides	0.031	8.59	0.86	37.61
Particulate Matter ⁵	2.20E-03	0.61	0.061	2.67
Particulate Matter <10µm ⁶	2.20E-03	0.61	0.061	2.67
Particulate Matter <2.5µm6	2.20E-03	0.61	0.061	2.67
Sulfur Oxides	2.05E-03	0.57	0.057	2.49
Volatile Organic Compounds ⁷	2.47E-03	0.68	0.068	3.00

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (lb/hp-hr) * hp where: EF = Emission Factor

hp = horse power

 3  The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

 $^{5.6}$  AP-42 emission data given for Particulate Matter (PM). Assumed Particulate Matter <10  $\mu m$  and Particulate Matter <2.5  $\mu m$  emissions were equal to PM emissions.

⁷ Volatile Organic Compounds assumed to be the exhaust portion of Total Organic Compounds (TOC).

### Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Bldg 20550 (Unit ID 19134) Process Equipment Unit No. 14

### Generator

## 435 hp

Criteria Air Pollutants	Worst-Case Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF (Sheet 2)	2.91	0.29	12.73
Nitrogen Oxides	AP-42 EF (Sheet 2)	13.49	1.35	59.06
Particulate Matter	AP-42 EF (Sheet 2)	0.96	0.10	4.19
Particulate Matter <10µm	AP-42 EF (Sheet 2)	0.96	0.10	4.19
Particulate Matter <2.5µm	AP-42 EF (Sheet 2)	0.96	0.10	4.19
Sulfur Oxides	AP-42 EF (Sheet 2)	0.89	0.089	3.91
Volatile Organic Compounds	AP-42 EF (Sheet 2)	1.07	0.11	4.71

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Worst-Case Data Source Explanations:

AP-42 EF (Sheet 2): Emission calculations were performed using AP-42 Emission Factors. Manufacturer Emission Factors were not available for this unit.

 $^{\rm 2}$  Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year.

Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet Emergency Generator at Bldg 20550 (Unit ID 19134) Process Equipment Unit No. 14

Manufacturer Specifications Not Available

### Sheet 2 - AP-42 Emission Factors Emission Calculation Spreadsheet Emergency Generator at Bldg 20550 (Unit ID 19134) Process Equipment Unit No. 14

#### Generator 435 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/hp-hr)	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	6.68E-03	2.91	0.29	12.73
Nitrogen Oxides	0.031	13.49	1.35	59.06
Particulate Matter ⁵	2.20E-03	0.96	0.096	4.19
Particulate Matter <10µm ⁶	2.20E-03	0.96	0.096	4.19
Particulate Matter <2.5µm ⁶	2.20E-03	0.96	0.096	4.19
Sulfur Oxides	2.05E-03	0.89	0.089	3.91
Volatile Organic Compounds ⁷	2.47E-03	1.07	0.11	4.71

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (lb/hp-hr) * hp where: EF = Emission Factor

hp = horse power

 3  The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly Emissions (lb/hr) * (8760 hr/yr) / (2000 lb/ton)

 $^{5.6}$  AP-42 emission data given for Particulate Matter (PM). Assumed Particulate Matter <10  $\mu m$  and Particulate Matter <2.5  $\mu m$  emissions were equal to PM emissions.

⁷ Volatile Organic Compounds assumed to be the exhaust portion of Total Organic Compounds (TOC).

## Emissions Summary Two New Emergency Generators TACLab Pumping Plant, Building 29999 (Unit Code 19181) Pump House 2 Manzano, Building 37528 (Unit Code 19182)

Hourly Emissions (lb/hr)												
Criteria Air Pollutants	Bldg 29999 (19181) Emission Rate	Bldg 37528 (19182) Emission Rate	Total Modification Emission Rate	Existing Permit 1786-M4 Limit	New Permit 1786-M5 Limit							
Carbon Monoxide	1.01	1.01	2.02	39.8	41.82							
Nitrogen Oxides	1.25	1.16	2.41	94.4	96.81							
Particulate Matter	0.06	0.06	0.12	6.24	6.36							
Particulate Matter <10μm	0.06	0.06	0.12	6.24	6.36							
Particulate Matter <2.5µm	0.06	0.06	0.12	6.24	6.36							
Sulfur Oxides	0.36	0.36	0.72	6.39	7.11							
Volatile Organic Compounds	0.10	0.09	0.19	5.62	5.81							
NMHC	0.10	0.09	0.19									
NO _x + NMHC	1.16	1.16	2.33	33.7	36.03							

	Controlled Annual Emissions ¹ (ton/yr)											
Criteria Air Pollutants	Bldg 29999 (19181) Emission Rate	Bldg 37528 (19182) Emission Rate	Total Modification Emission Rate	Existing Permit 1786-M4 Limit	New Permit 1786-M5 Limit							
Carbon Monoxide	0.10	0.10	0.20	3.98	4.18							
Nitrogen Oxides	0.12	0.12	0.24	9.44	9.68							
Particulate Matter	0.01	0.01	0.012	0.64	0.65							
Particulate Matter <10μm	0.01	0.01	0.012	0.64	0.65							
Particulate Matter <2.5µm	0.01	0.01	0.012	0.64	0.65							
Sulfur Oxides	0.04	0.04	0.072	0.65	0.72							
Volatile Organic Compounds	0.01	0.01	0.019	0.56	0.58							
NMHC	0.01	0.01	0.019									
NO _x + NMHC	0.12	0.12	0.23	3.37	3.60							

¹ Controlled annual emissions are calculated assuming a maximum of 200 operating hours per year.

Emission Calculation Spreadsheet	
Emergency Generator at TACLab Pumping Plant Building 29999 Unit II	) 19181

	Emission Calculation Spreadsheet											
	Emergency Generator at TACLab Pumping Plant Building 29999 Unit ID 19181											
Generator 176 hp.engine 50 KW generator												
	EPA AP-42 NSPS Nonroad Manufacturer's Values for Permit Application Forms Emission Factor											
Criteria Air Pollutants	Emission	Factor ¹	Emission Limit	Emission Factor	Emission Factor ³	Hourly E	missions	Annual Emi	ssions ⁷	PTE ⁸	Emission Factor Reference	
	(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	g/hr	lb/hr	lb/yr	ton/yr	ton/yr		
Carbon Monoxide	6.68E-03	3.03E+00	2.6	1.53	2.60	457.6	1.009	201.76	0.101	4.42	TIER 3 NSPS Non-road Engine	
Nitrogen Oxides	0.031	1.41E+01		3.22	3.22	566.7	1.249	249.88	0.125	5.47	Manufacturer's Emission Factor	
Particulate Matter ⁴	2.20E-03	9.98E-01	0.15	0.27	0.15	26.40	0.058	11.64	0.006	0.25	TIER 3 NSPS Non-road Engine	
Sulfur Oxides ⁵	2.05E-03	9.30E-01	0.93		0.93	163.68	0.361	72.17	0.036	1.58	TIER 3 NSPS Non-road Engine	
Volatile Organic Compounds ⁶	2.47E-03	1.12E+00		0.26	0.26	45.76	0.101	20.18	0.010	0.44	Manufacturer's Emission Factor	
NMHC	Not ava	il-bl-		0.26	0.26	45.76	0.101	20.18	0.010	0.44	Manufacturer's Emission Factor	
NO _x + NMHC	NOT AVA	BILLIDIE	3.00		3.00	528.0	1.164	232.80	0.116	5.10	TIER 3 NSPS Non-road Engine	

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996), for generators less than 600 hp. AP-42 Volatile Organic Compounds conservatively assumed to be Total Organic Compounds (TOC).

² Emission limits for Federal New Source Performance Standards (NSPS) for Stationary EMERGENCY Diesel Engines TIER 3

³ The NSPS standard is used for all polutants when available. The manufacturer's emission rates are used for polutants that do not have an NSPS standard. Manufacturer's emission rates are based on the worst case standby emissions, in this case the 1/4 standby rates. NSPS Nonroad Tier 3 Emission Limits from 40 CFR 89.112 Table 1.

⁴ Particulate matter emissions are considered to be < 1µm in size. Therefore PM emissions also reflect particulate matter less than 10 µm (PM) and particulate matter less than 2.5 µm (PM).

⁵ SOx emission factor is the maximum value of the manufacturer emission factor and the EPA AP-42 emission factor, as specified by the AEHD NSPS generator application form.

⁶ Volatile Organic Compounds not provided in the manufacturer emission data.

⁷ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (lb/yr) = Hourfy emissions (lb/hr) * 200 (hrs/yr) Annual emissions (ton/yr) = Hourfy emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/hon)

*Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year) The following equation was used to calculate PTE: PTE (tonlyr) = Hourly emissions (IbTry) * 8760 (htts/yr) / 2000 (IbTon)

## Emission Calculation Spreadsheet Emergency Generator at Pump House 2 Manzano Building 37528 Unit ID 19182

erator Gon 176 hp engine

60 kW generator

	EPA A	P-42	NSPS Nonroad Tier ²	Manufacturer's Emission Factor	Values for Permit Application Forms						
Criteria Air Pollutants	Emission	Factor ¹	Emission Limit	Emission Factor	Emission Factor ³ Hourly Emissions		Hourly Emissions Annual Emissions ⁷		PTE ⁸	Emission Factor Reference	
	(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	g/hr	lb/hr	lb/yr	ton/yr	ton/yr	
Carbon Monoxide	6.68E-03	3.03E+00	2.6	1.33	2.60	457.6	1.009	201.76	0.101	4.42	TIER 3 NSPS Non-road Engine
Nitrogen Oxides	0.031	1.41E+01		3.00	3.00	528.0	1.164	232.80	0.116	5.10	Manufacturer's Emission Factor
Particulate Matter ⁴	2.20E-03	9.98E-01	0.15	0.24	0.15	26.40	0.058	11.64	0.006	0.25	TIER 3 NSPS Non-road Engine
Sulfur Oxides ⁵	2.05E-03	9.30E-01	0.93		0.93	163.68	0.361	72.17	0.036	1.58	TIER 3 NSPS Non-road Engine
Volatile Organic Compounds ⁶	2.47E-03	1.12E+00		0.22	0.22	38.72	0.085	17.07	0.009	0.37	Manufacturer's Emission Factor
NMHC	Not ava	ilabla		0.22	0.22	38.72	0.085	17.07	0.009	0.37	Manufacturer's Emission Factor
NO _x + NMHC	NOT AVA	manie	3.00		3.00	528.0	1.164	232.80	0.116	5.10	TIER 3 NSPS Non-road Engine

The generator operates a maximum of **200** hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996), for generators less than 600 hp. AP-42 Volatile Organic Compounds conservatively assumed to be Total Organic Compounds (TOC).

² Emission limits for Federal New Source Performance Standards (NSPS) for Stationary EMERGENCY Diesel Engines TIER 3

³ The NSPS standard is used for all pollutants when available. The manufacturer's emission rates are used for pollutants that do not have an NSPS standard. Manufacturer's emission rates are based on the worst case standby emissions, in this case the 1/4 standby rates. NSPS Nonroad Tier 3 Emission Limits from 40 CFR 89.112 Table 1.

⁴ Particulate matter emissions are considered to be < 1 µm in size. Therefore PM emissions also reflect particulate matter less than 10 µm (PM₁₀) and particulate matter less than 2.5 µm (PM₂₀).

⁵ SOx emission factor is the maximum value of the manufacturer emission factor and the EPA AP-42 emission factor, as specified by the AEHD NSPS generator application form.

⁶ Volatile Organic Compounds not provided in the manufacturer emission data.

⁷ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (lb/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁸ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

## **Emission Estimates**

## Permit 1945 – Emergency Generator Bldg. 1037

Emission Unit ID

19151

## Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet 58th SOW - Building 1037 Fuel Cell Maintenance Facility (Unit Code 19151)

Generator

99 hp

NOx values adjusted based on Manufacturer emission factor which is subject to NSPS

Criteria Air Pollutants	Emission Factor Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.66	0.16	2.88
Nitrogen Oxides	AP-42 EF, Calculated Fuel Flow (Sheet 2)	1.39	0.35	6.08
Particulate Matter ⁵	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.21	0.054	0.94
Particulate Matter <10μm	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.21	0.054	0.94
Particulate Matter <2.5µm	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.21	0.054	0.94
Sulfur Oxides	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.20	0.050	0.88
Volatile Organic Compounds	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.24	0.061	1.06

The generator operates 500 hours per year and is powered by diesel fuel.

¹ Emission Factor Source Explanations:

Manufacturer EF (Sheet 1): Emission calculations were performed using Manufacturer Emission Factors AP-42 EF, Calculated Fuel Flow (Sheet 2): Emission calculations were performed using AP-42 Emission Factors and calculated Fuel Flow. AP-42 EF, Manufacturer Fuel Flow (Sheet 3): Emission calculations were performed using AP-42 Emission Factors and Manufacturer Specified Fuel Flow.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 500 hours operation per year. Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁵ Assumed Particulate Matter emissions equal Particulate Matter < 10μm and Particulate Matter <2.5μm emissions.

## Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet 58th SOW - Building 1037 Fuel Cell Maintenance Facility (Unit Code 19151)

## Generator

99 hp

Criteria Air Pollutants	Manufacturer Emission Factors (g/hp-hr)	Hourly Emissions ¹ (lb/hr)	Annual Emissions ² (ton/yr)	PTE ³ (ton/yr)
Carbon Monoxide	0.36	0.08	0.02	0.34
Nitrogen Oxides	6.36	1.39	0.35	6.08
Particulate Matter	0.10	0.02	0.01	0.10
Particulate Matter <10μm ⁴	0.10	0.02	0.01	0.10
Particulate Matter <2.5µm⁴	0.10	0.02	0.01	0.10
Sulfur Oxides	Manufa	acturer specificati	ons not available	
Volatile Organic Compounds	0.34	0.07	0.02	0.33

The generator operates 500 hours per year and is powered by diesel fuel.

¹ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / 453.5924 (lb/g)

where: EF = Emission Factor hp = horse power

² The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 500 (hrs/yr) / 2000 (lb/ton)

³ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

 4  Manufacturer exhaust emission data given for Particulate Matter (PM). Assumed PM emissions equal Particulate Matter <10  $\mu m$  and Particulate Matter <2.5  $\mu m$  emissions.

## Sheet 2 - AP-42 Emission Factors, Calculated Fuel Flow Emission Calculation Spreadsheet 58th SOW - Building 1037 Fuel Cell Maintenance Facility (Unit Code 19151)

## Generator

99 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.95	5.1	137000	0.66	0.16	2.88
Nitrogen Oxides	4.41	5.1	137000	3.06	0.76	13.39
Particulate Matter ⁷	0.31	5.1	137000	0.21	0.054	0.94
Particulate Matter <10µm	0.31	5.1	137000	0.21	0.054	0.94
Particulate Matter <2.5µm ⁸	0.31	5.1	137000	0.21	0.054	0.94
Sulfur Oxides	0.29	5.1	137000	0.20	0.050	0.88
Volatile Organic Compounds ⁹	0.35	5.1	137000	0.24	0.061	1.06

The generator operates 500 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996)

² The following equation was used to calculate hourly fuel use:

Hourly fuel use = hp * Brake specific fuel consumption (7000 Btu/hp-hr) * 1/HV (Btu/gal)

³ The heating value (HV) of diesel fuel is given in AP-42 Section 3.3 (October 1996), Table 3.3-1(footnote c) as 19300 Btu/lb. The HV was converted into units of Btu/gal using the following equation: Heating Value (HV) (Btu/gal) = HV (Btu/lb) * Density of diesel fuel (Ib/gal) The density of diesel fuel is 7.1 Ib/gal (Emission Factor Documentation for Section 3.3, Gasoline and Diesel Industrial Engines (April 1993)). Heating Value (HV) (Btu/gal) = 19300 (Btu/lb) * 7.1 (Ib/gal) = 137000 Btu/gal (rounded to the nearest 100)

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor HV = Heating Value

⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 500 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ No emission factor data for Particulate Matter (PM) is included in AP-42, assumed PM emission factors are equal to Particulate Matter <10 µm.

 8  Assumed Particulate Matter <2.5  $\mu m$  equals Particulate Matter <10  $\mu m.$ 

⁹ Volatile Organic Compounds assumed to be the exhaust portion of Total Organic Compounds (TOC).

## Sheet 3 - AP-42 Emission Factors, Manufacturer Specification Fuel Flow Emission Calculation Spreadsheet 58th SOW - Building 1037 Fuel Cell Maintenance Facility (Unit Code 19151)

## Generator

99 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Manufacturer Fuel Use (gal/hr)	Heating Value (HV) ² (Btu/gal)	Hourly Emissions ³ (lb/hr)	Annual Emissions ⁴ (ton/yr)	PTE ⁵ (ton/yr)
Carbon Monoxide	0.95	5.0	137000	0.65	0.16	2.85
Nitrogen Oxides	4.41	5.0	137000	3.02	0.76	13.23
Particulate Matter ⁶	0.31	5.0	137000	0.21	0.053	0.93
Particulate Matter <10µm	0.31	5.0	137000	0.21	0.053	0.93
Particulate Matter <2.5µm ⁷	0.31	5.0	137000	0.21	0.053	0.93
Sulfur Oxides	0.29	5.0	137000	0.20	0.050	0.87
Volatile Organic Compounds ⁸	0.35	5.0	137000	0.24	0.060	1.05

The generator operates 500 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996)

² The heating value (HV) of diesel fuel is given in AP-42 Section 3.3 (October 1996), Table 3.3-1(footnote c) as 19300 Btu/lb. The HV was converted into units of Btu/gal using the following equation: Heating Value (HV) (Btu/gal) = HV (Btu/lb) * Density of diesel fuel (Ib/gal) The density of diesel fuel is 7.1 Ib/gal (Emission Factor Documentation for Section 3.3, Gasoline and Diesel Industrial Engines (April 1993)). Heating Value (HV) (Btu/gal) = 19300 (Btu/lb) * 7.1 (Ib/gal) = 137000 Btu/gal (rounded to the nearest 100)

³ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor HV = Heating Value

⁴ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 500 (hrs/yr) / 2000 (lb/ton)

⁵ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁶ No emission factor data for Particulate Matter (PM) is included in AP-42, assumed PM emission factors are equal to Particulate Matter <10 µm.

 7  Assumed Particulate Matter <2.5  $\mu m$  equals Particulate Matter <10  $\mu m.$ 

⁸ Volatile Organic Compounds assumed to be the exhaust portion of Total Organic Compounds (TOC).

## **Emission Estimates**

## Permit 2085 – Emergency Generator Bldg. 416

Emission Unit ID

19160

## Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Building 416 (Unit ID 19160)

## Generator

94.5 hp

Criteria Air Pollutants	Emission Estimation Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.63	0.063	2.75
Nitrogen Oxides	Manufacturer EF (Sheet 1)	0.99	0.099	4.35
Particulate Matter	Manufacturer EF (Sheet 1)	0.047	0.0047	0.20
Particulate Matter <10μm	Manufacturer EF (Sheet 1)	0.047	0.0047	0.20
Particulate Matter <2.5µm	Manufacturer EF (Sheet 1)	0.047	0.0047	0.20
Sulfur Oxides	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.19	0.019	0.84
Volatile Organic Compounds	Manufacturer EF (Sheet 1)	0.062	0.0062	0.27
NMHC + NOx	Manufacturer EF (Sheet 1)	1.03	0.10	4.49

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission Estimation Data Source Explanations:

Manufacturer EF (Sheet 1): Emission calculations were performed using Manufacturer-Supplied Emission Factors. AP-42 EF, Calculated Fuel Flow (Sheet 2): Emission calculations were performed using AP-42 Emission Factors and calculated Fuel Flow.

AP-42 EF, Manufacturer Fuel Flow (Sheet 3): Emission calculations were performed using AP-42 Emission Factors and Manufacturer Specified Fuel Flow.

Unless the pollutant is subject to an NSPS standard (see footnote 5) and AP-42 emission estimates exceed the applicable standard, worst-case emissions are estimated for the generator using the methodology described.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year. Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year).

The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

General Note: This generator is subject to 40 CFR Part 60 Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines and is equipped with a 2006 model year engine (manufactured 1 June 2006) rated at 94.5 hp (70.5 kW). Based on the install date (post-2008), the engine rating (94.5 hp) and displacement of less than 10 liters per cylinder, this generator must comply with the Tier 2 Emission Standards in Table 1 of 40 CFR 89.112. For this generator (engine 37 <=kW< 75), the emission standards are 7.5 g/kW-hr NMHC + NOx, 5.0 g/kW-hr CO, and 0.40 g/kW-hr PM. This generator meets the Emission Standards.

## Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet Emergency Generator at Building 416 (Unit ID 19160)

### Generator 94.5 hp

Criteria Air Pollutants	Manufacturer Supplied Emission Factors (g/kW-hr)	Converted Manufacturer Emission Factors (g/hp-hr) ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)		
Carbon Monoxide⁵	0.8	0.6	0.12	0.012	0.54		
Nitrogen Oxides ⁶	6.40	4.77	0.99	0.099	4.35		
Particulate Matter ⁷	0.30	0.22	0.047	0.0047	0.20		
Particulate Matter <10µm ⁷	0.30	0.22	0.047	0.0047	0.20		
Particulate Matter <2.5µm ⁷	0.30	0.22	0.047	0.0047	0.20		
Sulfur Oxides	Manufacturer emission factor not available						
Volatile Organic Compounds ⁸	0.40	0.30	0.062	0.0062	0.27		
NMHC + NOx ⁹	6.6	4.9	1.03	0.10	4.49		

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹Emission factors in g/kW-hr obtained from Wagner Equipment, with a conversion to g/hp-hr made using 1 kW=1.341 hp.

² The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / 453.6 (g/lb) where: EF = Emission Factor

hp = horse power

³ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁵ The carbon monoxide emission factor for Engine 6PKXL04.4RG1 was provided by the manufacturer.

⁶ The nitrogen oxides emission factor for a similar 1104C engine was provided by the manufacturer. The Engine 6PKXL04.4RG1 factor was not used since it represented NMHC + NOx.

⁷ The particulate matter emission factor for Engine 6PKXL04.4RG1 was provided by the manufacturer. The particulate matter emission factor was conservatively assumed to represent both PM10 and PM2.5 as well.

⁸ A hydrocarbons (HC) emission factor for a similar 1104C engine provided by the manufacturer was used to conservatively represent VOC. The Engine 6PKXL04.4RG1 factor was not used since it represented NMHC + NOx.

⁹ The NMHC + NOx emission factor for engine 6PKXL04.4RG1 was provided by the manufacturer. This emission calculation is included since there is an NSPS limit for this engine.

NMHC = Non-methane Hydrocarbons NOx = Nitrogen oxides

## Sheet 2 - AP-42 Emission Factors, Calculated Fuel Flow Emission Calculation Spreadsheet Emergency Generator at Building 416 (Unit ID 19160)

## Generator

94.5 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.95	4.8	137000	0.63	0.063	2.75
Nitrogen Oxides	4.41	4.8	137000	2.92	0.29	12.78
Particulate Matter ⁷	0.31	4.8	137000	0.21	0.021	0.90
Particulate Matter <10µm ⁷	0.31	4.8	137000	0.21	0.021	0.90
Particulate Matter <2.5µm ⁷	0.31	4.8	137000	0.21	0.021	0.90
Sulfur Oxides	0.29	4.8	137000	0.19	0.019	0.84
Volatile Organic Compounds ⁸	0.35	4.8	137000	0.23	0.023	1.01
NMHC + VOC	AP-42 emission factor not available.					

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² Hourly fuel use is an interim value calculated only for purposes of converting the max hp into useful units and does not represent the engine's actual fuel use.

Hourly fuel use = hp * Brake specific fuel consumption (7000 Btu/hp-hr) * 1/HV (Btu/gal)

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/gal.

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 100000

where: EF = Emission Factor

HV = Heating Value

⁵ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ The AP-42 Table 3.3-1 emission factor table indicates that all particulate is assumed to be <= 1 μm in size. Therefore the same emission factor is shown here for PM, PM10, and PM2.5.

⁸ Volatile Organic Compounds conservatively assumed to be Total Organic Compounds (TOC).

## Sheet 3 - AP-42 Emission Factors, Manufacturer Specification Fuel Flow Emission Calculation Spreadsheet Emergency Generator at Building 416 (Unit ID 19160)

## Generator

94.5 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (Ib/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)		
Carbon Monoxide	0.95	4.2	137000	0.55	0.055	2.39		
Nitrogen Oxides	4.41	4.2	137000	2.54	0.25	11.11		
Particulate Matter ⁷	0.31	4.2	137000	0.18	0.018	0.78		
Particulate Matter <10µm ⁷	0.31	4.2	137000	0.18	0.018	0.78		
Particulate Matter <2.5µm ⁷	0.31	4.2	137000	0.18	0.018	0.78		
Sulfur Oxides	0.29	4.2	137000	0.17	0.017	0.73		
Volatile Organic Compounds ⁸	0.35	4.2	137000	0.20	0.020	0.88		
NMHC + VOC		AP-42 emission factor not available.						

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² Maximum manufacturer specified fuel flow.

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/gal.

⁴ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor

HV = Heating Value

⁵ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ The AP-42 Table 3.3-1 emission factor table indicates that all particulate is assumed to be <= 1 μm in size. Therefore the same emission factor is shown here for PM, PM10, and PM2.5.

⁸ Volatile Organic Compounds conservatively assumed to be Total Organic Compounds (TOC).

## **Emission Estimates**

## Permit 2100 – Battlespace Environment Laboratory (BEL) Emergency Generator

Emission Unit ID

19161

## Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet Emergency Generator at Building 570 (Unit ID 19161)

## Generator

348 hp

Criteria Air Pollutants	Emission Estimation Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	Tier 3 EF (Sheet 4)	2.00	0.20	8.77
Nitrogen Oxides	Manufacturer EF (Sheet 1)	1.77	0.18	7.77
Particulate Matter	Tier 3 EF (Sheet 4)	0.11	0.011	0.50
Particulate Matter <10μm	Tier 3 EF (Sheet 4)	0.11	0.011	0.50
Particulate Matter <2.5µm	Tier 3 EF (Sheet 4)	0.11	0.011	0.50
Sulfur Oxides	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.71	0.071	3.09
Volatile Organic Compounds	Manufacturer EF (Sheet 1)	0.11	0.011	0.50
NMHC + NOx ⁵	Tier 3 EF (Sheet 4)	2.29	0.23	10.02

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission Estimation Data Source Explanations:

Manufacturer EF (Sheet 1): Emission calculations were performed using Manufacturer-Supplied Emission Factors.

AP-42 EF, Calculated Fuel Flow (Sheet 2): Emission calculations were performed using AP-42 Emission Factors and calculated Fuel Flow.

AP-42 EF, Manufacturer Fuel Flow (Sheet 3): Emission calculations were performed using AP-42 Emission Factors and Manufacturer Specified Fuel Flow.

*Tier 3 EF (Sheet 4)*: Emission calculations were performed using Tier 3 Standards to represent the worst-case emission factors. If the pollutant is subject to an NSPS standard (see footnote 5) then the Tier 3 EF sheet is used to estimate the worst-case emissions. For the other pollutants worst-case emissions are estimated for the generator using the methodology described.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year.

Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year).

The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁵ This generator is subject to 40 CFR Part 60 Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines and will be equipped with either a 2009 or 2010 model year engine rated at 348 hp (220 kW). The manufacturer provided a compliance demonstration for 2009 and 2010 model year engines with the emission standards on the Exhaust Emission Data Sheet included in Attachment C of this application. Certified engine emissions are the same for both model years. Based on the install date (2010), the engine rating (348 hp) and displacement of less than 10 liters per cylinder, this generator must comply with the Tier 3 Emission Standards in Table 1 of 40 CFR 89.112. For this generator (engine 225<=kW<450), the emission standards are 4.0 g/kW-hr NMHC + NOx, 3.5 g/kW-hr CO, and 0.20 g/kW-hr PM. This generator meets the emission standards.

## Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet Emergency Generator at Building 570 (Unit ID 19161)

## Generator

348 hp

Criteria Air Pollutants	Manufacturer Supplied Emission Factors (g/kW-hr) ¹	Manufacturer Supplied Emission Factors (g/hp-hr) ²	Hourly Emissions ³ (lb/hr)	Annual Emissions ⁴ (ton/yr)	PTE⁵ (ton/yr)
Carbon Monoxide ⁶	0.6	0.45	0.34	0.034	1.50
Nitrogen Oxides ⁷	3.1	2.31	1.77	0.18	7.77
Particulate Matter ⁸	0.09	0.07	0.051	0.0051	0.23
Particulate Matter <10µm ⁸	0.09	0.07	0.051	0.0051	0.23
Particulate Matter <2.5µm ⁸	0.09	0.07	0.051	0.0051	0.23
Sulfur Oxides		Manufacturer e	mission factor not a	vailable	
Volatile Organic Compounds ⁹	0.2	0.15	0.11	0.011	0.50
NMHC + NOx ¹⁰	3.3	2.46	1.89	0.19	8.27

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹Certified engine emission factors provided by the engine manufacturer, Isuzu Motors Limited. Specifically, the data can be found on the last page of Attachment C of this application at Item 19 (Certification Levels) of the EPA Certificate of Conformity and test information forms document corresponding to EPA Engine Family Number 9SZXL09.8HXB which applies to 6UZ1X engines built in 2009.

² Manufacturer emission factors converted to g/hp-hr using 1 kW=1.341 hp.

³ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / 453.6 (g/lb)

where: EF = Emission Factor hp = horse power

⁴ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (lb/syr) / 2000 (lb/ton)

⁵ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁶ The carbon monoxide emission factor for Engine Model 6UZ1X was provided by the manufacturer.

⁷ The nitrogen oxides emission factor for Engine Model 6UZ1X was provided by the manufacturer.

⁸ The particulate matter emission factor for Engine Model 6UZ1X was provided by the manufacturer. The particulate matter emission factor was conservatively assumed to represent both PM10 and PM2.5.

⁹ The HC/OMHCE emission factor for Engine Model 6UZ1X was provided by the manufacturer.

¹⁰ The NMHC + NOx emission factor for Engine Model 6UZ1X was provided by the manufacturer. This emission calculation is included since there is an NSPS limit for this engine.

HC = Hydrocarbons NMHC = Non-methane Hydrocarbons NOx = Nitrogen oxides OMHCE = Organic Material Hydrocarbon Equivalent

## Sheet 2 - AP-42 Emission Factors, Calculated Fuel Flow Emission Calculation Spreadsheet Emergency Generator at Building 570 (Unit ID 19161)

## Generator

348 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)	
Carbon Monoxide	0.95	17.8	137000	2.31	0.23	10.14	
Nitrogen Oxides	4.41	17.8	137000	10.74	1.074	47.05	
Particulate Matter ⁷	0.31	17.8	137000	0.76	0.076	3.31	
Particulate Matter <10µm ⁷	0.31	17.8	137000	0.76	0.076	3.31	
Particulate Matter <2.5µm ⁷	0.31	17.8	137000	0.76	0.076	3.31	
Sulfur Oxides	0.29	17.8	137000	0.71	0.071	3.09	
Volatile Organic Compounds ⁸	0.35	17.8	137000	0.85	0.085	3.73	
NMHC + NOx	AP-42 emission factor not available.						

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² Hourly fuel use is an interim value calculated only for purposes of converting the max hp into useful units and does not represent the engine's actual fuel use.

Hourly fuel use = hp * Brake specific fuel consumption (7000 Btu/hp-hr) * 1/HV (Btu/gal)

- ³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/gal.
- ⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor HV = Heating Value
- ⁵ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ The AP-42 Table 3.3-1 emission factor table indicates that all particulate is assumed to be <= 1 μm in size. Therefore the same emission factor is shown here for PM, PM10, and PM2.5.

⁸ Volatile Organic Compounds assumed to be the exhaust portion of the Total Organic Compounds (TOC).

#### Sheet 3 - AP-42 Emission Factors, Manufacturer Specification Fuel Flow Emission Calculation Spreadsheet Emergency Generator at Building 570 (Unit ID 19161)

#### Generator

348 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.95	14.7	137000	1.91	0.19	8.38
Nitrogen Oxides	4.41	14.7	137000	8.88	0.89	38.90
Particulate Matter ⁷	0.31	14.7	137000	0.62	0.062	2.73
Particulate Matter <10µm ⁷	0.31	14.7	137000	0.62	0.062	2.73
Particulate Matter <2.5µm ⁷	0.31	14.7	137000	0.62	0.062	2.73
Sulfur Oxides	0.29	14.7	137000	0.58	0.058	2.56
Volatile Organic Compounds ⁸	0.35	14.7	137000	0.70	0.070	3.09
NMHC + NOx		AP-	42 emission factor not a	vailable.		

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² Maximum manufacturer specified fuel flow.

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/gal.

⁴ The following equation was used to calculate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000

where: EF = Emission Factor

HV = Heating Value

⁵ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ The AP-42 Table 3.3-1 emission factor table indicates that all particulate is assumed to be <= 1 μm in size. Therefore the same emission factor is shown here for PM, PM10, and PM2.5.

⁸ Volatile Organic Compounds assumed to be the exhaust portion of the Total Organic Compounds (TOC).

#### Sheet 4 - Tier 3 Standards as Worst-case Emission Factors Emission Calculation Spreadsheet Emergency Generator at Building 570 (Unit ID 19161)

#### Generator

348 hp

Criteria Air Pollutants	Tier 3 Emission Standards ¹ (g/kW-hr)	Converted Emission Factors ² (g/hp-hr)	Hourly Emissions ³ (lb/hr)	Annual Emissions ⁴ (ton/yr)	PTE⁵ (ton/yr)
Carbon Monoxide	3.5	2.6	2.00	0.20	8.77
Nitrogen Oxides		Tier 3 Standard n	ot set for this pollu	tant	
Particulate Matter ⁶	0.20	0.15	0.11	0.011	0.50
Particulate Matter <10µm ⁶	0.20	0.15	0.11	0.011	0.50
Particulate Matter <2.5µm ⁶	0.20	0.15	0.11	0.011	0.50
Sulfur Oxides Volatile Organic Compounds		Tier 3 Standard not	t set for these pollu	itants	
NMHC + NOx ⁷	4.0	3.0	2.29	0.23	10.02

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ The applicable Tier 3 Emission Standards are from the engine rating of 225<=kW<450 in Table 1 of 40 CFR 89.112.

²Worst-case emission factors assumed to be equal to the required Tier 3 standards which are provided in g/kW-hr. Values converted to g/hp-hr using 1 kW=1.341 hp.

³ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / 453.6 (g/lb) where: EF = Emission Factor

hp = horse power

⁴ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁵ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁶ The particulate matter emission factor was conservatively assumed to represent both PM10 and PM2.5 as well.

⁷ This emission calculation is included since there is an NSPS limit for this engine.

NMHC = Non-methane Hydrocarbons NOx = Nitrogen oxides

		ne Fuel 01, 2-03-003-01)		el Fuel 02, 2-03-001-01)	
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
СО	6.96 E-03 ^d	0.99 ^d	6.68 E-03	0.95	D
$SO_x$	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

### Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.
 ^b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
 ^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
 ^d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

## **Emission Estimates**

# Permit 2105-RV1 – AFRL Bldg. 277 Diesel Generator

Emission Unit ID

### Summary of Worst-Case Generator Emissions Emission Calculation Spreadsheet AFRL/RVEI Generator at Building 277 (Unit ID 19159)

#### Generator 762 hp

Criteria Air Pollutants	Emission Estimation Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide⁵	AP-42 EF, Manufacturer Fuel Flow (Sheet 3)	4.26	5.33	18.67
Nitrogen Oxides	Manufacturer EF (Sheet 1)	6.58	8.22	28.81
Particulate Matter ⁵	Manufacturer EF (Sheet 1)	0.14	0.17	0.60
Particulate Matter <10µm	Manufacturer EF (Sheet 1)	0.14	0.17	0.60
Particulate Matter <2.5µm	Manufacturer EF (Sheet 1)	0.14	0.17	0.60
Sulfur Oxides	AP-42 EF, Calculated Fuel Flow (Sheet 2)	2.15	2.69	9.44
Volatile Organic Compounds	AP-42 EF, Calculated Fuel Flow (Sheet 2)	0.48	0.60	2.10
NMHC + NO _x ⁵	Manufacturer EF (Sheet 1)	7.06	8.82	30.91

The generator operates a maximum of 2,500 hours per year and is powered by diesel fuel.

¹ Emission Estimation Data Source Explanations:

Manufacturer EF (Sheet 1): Emission calculations were performed using Manufacturer Emission Factors.

AP-42 EF, Calculated Fuel Flow (Sheet 2): Emission calculations were performed using AP-42 Emission Factors and calculated Fuel Flow.

AP-42 EF, Manufacturer Fuel Flow (Sheet 3): Emission calculations were performed using AP-42 Emission Factors and Manufacturer Specified Fuel Flow.

Unless the pollutant is subject to an NSPS standard (see footnote 5) and emission estimates exceed the applicable standard, worst-case emissions are estimated for the generator using the methodology described.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 2,500 hours of operation per year. Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year).

The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁵ This generator is subject to 40 CFR Part 60 Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines, and is equipped with a model year 2010 engine rated at 762 hp (568.2 kW). Based on the engine rating (568.2 kW) and displacement of less than 10 liters per cylinder, this generator must comply with the emission standards in 40 CFR 89.112 Table 1 for rated power greater than 560 kW, Tier 2 (Model Year 2006 and beyond). This generator meets the standards outlined in this regulation.

### Sheet 1 - Manufacturer Emission Factors Emission Calculation Spreadsheet AFRL/RVEI Generator at Building 277 (Unit ID 19159)

#### Generator

762 hp

Criteria Air Pollutants	Manufacturer Emission Factors ¹ (g/kW-hr)	Manufacturer Emission Factors ² (g/hp-hr)	Hourly Emissions ³ (lb/hr)	Annual Emissions ⁴ (ton/yr)	PTE⁵ (ton/yr)
Carbon Monoxide	2.11	1.57	2.64	3.30	11.58
Nitrogen Oxides	5.25	3.91	6.58	8.22	28.81
Particulate Matter	0.11	0.082	0.14	0.17	0.60
Particulate Matter <10µm ⁶	0.11	0.082	0.14	0.17	0.60
Particulate Matter <2.5µm ⁷	0.11	0.082	0.14	0.17	0.60
Sulfur Oxides		Manufacturer emis	sion factor not avai	lable	
Volatile Organic Compounds	0.11	0.082	0.14	0.17	0.60
NMHC + NO _x ⁸	5.36	4.00	6.71	8.39	29.41

The generator operates a maximum of 2,500 hours per year and is powered by diesel fuel.

¹Manufacturer Emission Factors taken from the D2 cycle emission factor calculations in Appendix F.

² Conversion of factors from g/kW-hr to g/hp-hr was made using 1 kW=1.341 hp.

³ Hourly emissions (lb/hr) = EF (g/hp-hr) * hp / 453.6 (g/lb) where: EF = Emission Factor hp = horse power

⁴ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 2500 (hrs/yr) / 2000 (lb/ton)

⁵ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

^{6,7} Assumed Particulate Matter <2.5µm and Particulate Matter <10µm equal Particulate Matter.

⁸ The NMHC + NOx emission factor is the sum of the nitrogen oxides emission factor and the volatile organic compounds emission factor. This emission factor calculation is included because there is an NSPS limit for this engine

#### Sheet 2 - AP-42 Emission Factors, Calculated Fuel Flow Emission Calculation Spreadsheet AFRL/RVEI Generator at Building 277 (Unit ID 19159)

#### Generator

762 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.85	38.9	137000	4.53	5.67	19.86
Nitrogen Oxides	3.2	38.9	137000	17.07	21.34	74.76
Particulate Matter	0.1	38.9	137000	0.53	0.67	2.34
Particulate Matter <10µm ⁷	0.1	38.9	137000	0.53	0.67	2.34
Particulate Matter <2.5µm ⁸	0.1	38.9	137000	0.53	0.67	2.34
Sulfur Oxides ⁹	0.404	38.9	137000	2.15	2.69	9.44
Volatile Organic Compounds ¹⁰	0.09	38.9	137000	0.48	0.60	2.10
NMHC + NO _x		/	AP-42 emission factor no	ot available		

The generator operates a maximum of 2,500 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel and All Stationary Dual-Fuel Engines, Table 3.4-1 (October 1996).

² The following equation was used to calculate hourly fuel use: Hourly fuel use = hp * Brake specific fuel consumption (7000 Btu/hp-hr) * 1/HV (Btu/gal)

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/gal.

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * fuel use (gal/hr) * HV (Btu/gal) / 100000C where: EF = Emission Factor HV = Heating Value

⁵ The following equation was used to calculate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 2500 (hrs/yr) / 2000 (lb/ton

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

 7,8  Assumed Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

⁹ The following equation was used to calculate the sulfur oxides emission factor:

Sulfur oxides emission factor = 1.01 * S

where: S = Percent sulfur in diesel fuel (0.4% from AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985) Typical Parameters of Various Fuels)

¹⁰ Volatile Organic Compounds assumed to be Total Organic Compounds (TOC).

#### Sheet 3 - AP-42 Emission Factors, Manufacturer Specification Fuel Flow Emission Calculation Spreadsheet AFRL/RVEI Generator at Building 277 (Unit ID 19159)

#### Generator

762 hp

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.85	36.6	137000	4.26	5.33	18.67
Nitrogen Oxides	3.2	36.6	137000	16.05	20.06	70.28
Particulate Matter	0.1	36.6	137000	0.50	0.63	2.20
Particulate Matter <10µm ⁷	0.1	36.6	137000	0.50	0.63	2.20
Particulate Matter <2.5µm ⁸	0.1	36.6	137000	0.50	0.63	2.20
Sulfur Oxides ⁹	0.404	36.6	137000	2.03	2.53	8.87
Volatile Organic Compounds ¹⁰	0.09	36.6	137000	0.45	0.56	1.98
NMHC + NO _x		AP	-42 emission factor not a	available		

The generator operates a maximum of 2,500 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel and All Stationary Dual-Fuel Engines, Table 3.4-1 (October 1996).

² Maximum manufacturer specified fuel flow from the Gen Set Package Performance Data Sheet in Appendix F.

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/gal.

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor HV = Heating Value

⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 2500 (hrs/yr) / 2000 (lb/ton

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

 7,8  Assumed Particulate Matter <2.5 $\mu$ m and Particulate Matter <10 $\mu$ m equal Particulate Matter.

⁹ The following equation was used to calculate the sulfur oxides emission factor:

Sulfur oxides emission factor = 1.01 * S

where: S = Percent sulfur in diesel fuel (0.4% from AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels)

¹⁰ Volatile Organic Compounds assumed to be Total Organic Compounds (TOC).

### **Emission Estimates**

## Permit 2147 – AFSPC RADOME Emergency Generator

Emission Unit ID

#### Section 4.

Potential Emission Rate

(Uncontrolled Emissions)

Use manufacturer's data, compliance performance stack test data or the attached USEPA Emission Factors in grams per horsepower-hour (g/Hp-hr) associated with the Engine's Horsepower Rating and Model Year

Model Year	Pollutant	Emission Factors g/Hp-hr	T I M E S	Actual Engine Hp	E Q U A L S	Emission In Grams Per Hour	D I V I D E	Grams Per Pound	E Q U A L S	Emission in Pounds Per Hour	T I M E S	Potential Operating Hours Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons Per Year
	CO	2.60	x		=	1037.40	+	+ + + + + + + + + + + + + + + + + + +	=	2.29	x	8,760	÷	2,000	=	10.02
	NOx	2.70	x	399 hp	=	1077.30	÷		=	2.38	x	8,760	÷	2,000	=	10.40
2010	NMHC	0.08	x		=	31.92	÷		=	0.07	x	8,760	÷	2,000	=	0.31
2010 or 2011	*NOx+ NMHC	3.00	x		=	1197.00	÷		=	2.64	x	8,760	÷	2,000	=	11.56
	**SOx	0.93	x		=	371.02	÷		=	0.82	x	8,760	÷	2,000	=	3.58
	***PM	0.15	x		=	59.85	÷	=	0.13	x	8,760	÷	2,000	=	0.58	

* If the USEPA Emission Factor or manufacturer's data is given as combined NOx + NMHC, and real provide individual emission factors for NOx and NMHC from the manufacturer or other approved methodology for estimating individual emission factors

** Manufacturer's SOx factor shall be used when larger than the USEPA Emission Factor.

*** Particulate Matter (PM) emissions are considered to be < 1 µm (micron). Therefore, PM emissions also reflect PM10 & PM25.

#### Requested allowable rate) (Controlled Emissions) Section 5. Potential to Emit

Transfer each pollutant Emission in Pounds Per Hour from column above to the Emission in Pounds Per Hour column below. Complete the equation after inserting the Requested Operating Hours Per Year. Pound Per Hour rate for each pollutant must be met if performance testing is requested.

Pollutant	Emission in Pounds Per Hour	T I M E S	Requested Operating Hours Per Year	E Q U A L S	Pounds Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons Per Year
CO	2.29	x	200	=	457.41	÷	2,000	=	0.23
NOx	2.38	x	200	=	475.00	÷	2,000	=	0.24
NMHC	0.07	x	200	=	14.07	÷	2,000	=	0.007
*NOx + NMHC	2.64	x	200	=	527.78	÷	2,000	=	0.26
**SOx	0.82	x	200	=	163.59	÷	2,000	=	0.082
***PM	0.13	x	200	=	26.39	+	2,000	=	0.013

I, the undersigned, a responsible officer of the applicant company, certify that to the best of my knowledge, the information stated on this application, together with associated drawings, specifications, and other data, give a true and complete representation of the existing, modified existing, or planned new stationary source with respect to air pollution sources and control equipment. I also understand that any significant omissions, errors, or misrepresentations in these data will be cause for revocation of part or all of the resulting source registration and air quality permit.

Note: The following shall be protected as confidential if requested (checked) by the applicant. Provide detailed nature of request as an attachment.

Any information relating to processes or production techniques, which are unique to owner / operator 

Data relating to owner / operator profits and costs, which have not previously been made public 

Robert L. Maness, Colonel, USAF Print Name

Sign Name

Installation Commander, Kirtland AFB Title

/ 11 /20 11 Date

METHOD OF SUBMITTAL:

Mail OR Hand deliver (8:00am - 5:00pm ; Monday - Friday) to the Address at the top of Page 1.

# **Emission Estimates**

# Permit 3013-RV1 – AFRL/RV ISOON Telescope Facility

Emission Unit ID

#### Potential Emission Rate Section 4. (Uncontrolled Emissions)

Use manufacturer's data, compliance performance stack test data or the attached USEPA Emission Factors in grams per horsepower-hour (g/Hp-hr) associated with the Engine's Horsepower Rating and Model Year

Jodel Jear	Pollutant	Emission Factors g/Hp-hr	T I M E S	Actual Engine Hp	E Q U A L S	Emission In Grams Per Hour	D I V I D E	Grams Per Pound	E Q U A L S	Emission in Pounds Per Hour	T I M E S	Potential Operating Hours Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emissión In Tons Per Year
	CO	2.6	x	250 Hp	=	650	÷	453.6	=	1.43	x	8,760	÷	2,000	=	6.26
	NOx	2.0	x	250 Hp	=	500	÷	453.6	=	1.10	x	8,760	÷	2,000	=	4.82
2011	NMHC	0.05	x	250 Hp	=	12.5	÷	453.6	=	0.028	x	8,760	÷	2,000	=	0.12
2011	*NOx + NMHC	3.0	x	250 Hp	=	750	÷	453.6	=	1.65	x	8,760	÷	2,000	=	7.23
1.1	**SO _x	0.93	x	250 Hp	=	232.5	÷	453.6	=	0.51	x	8,760	÷	2,000	=	2.23
	***PM	0.15	x	250 Hp	=	37.5	÷	453.6	=	0.083	x	8,760	÷	2,000	=	0.36

' If the USEPA Emission Factor or manufacturer's data is given as combined NOx + NMHC, also provide individual emission factors for NOx and NMHC rom the manufacturer or other approved methodology for estimating individual emission factors.

** Manufacturer's SOx factor shall be used when larger than the USEPA Emission Factor.

*** Particulate Matter (PM) emissions are considered to be < 1 µm (micron). Therefore, PM emissions also reflect PM10 & PM25.

#### Section 5. Potential to Emit (Requested allowable rate) (Controlled Emissions)

Transfer each pollutant Emission in Pounds Per Hour from column above to the Emission in Pounds Per Hour column below. Complete the equation after inserting the Requested Operating Hours Per Year. Pound Per Hour rate for each pollutant must be met if performance testing is requested.

Pollutant	Emission in Pounds Per Hour	T I M E S	Requested Operating Hours Per Year	E Q U A L S	Pounds Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons Per Year
СО	1.43	x	200	=	286	÷	2,000	=	0.14
NOx	1.10	x	200	=	220	÷	2,000	=	0.11
NMHC	0.028	x	200	=	5.6	÷	2,000	=	0.0028
*NOx + NMHC	1.65	x	200	=	330	÷	2,000	=	0.17
**SOx	0.51	x	200	=	102	÷	2,000	=	0.051
***PM	0.083	x	200	=	16.6	÷	2,000	=	0.0083

, the undersigned, a responsible officer of the applicant company, certify that to the best of my knowledge, the information stated on this application, together vith associated drawings, specifications, and other data, give a true and complete representation of the existing, modified existing, or planned new stationary ource with respect to air pollution sources and control equipment. I also understand that any significant omissions, errors, or misrepresentations in these data vill be cause for revocation of part or all of the resulting source registration and air quality permit.

Note: The following shall be protected as confidential if requested (checked) by the applicant. Provide detailed nature of request as an attachment.

Any information relating to processes or production techniques, which are unique to owner / operator

Data relating to owner / operator profits and costs, which have not previously been made public

MAR 0 7 2012 John C. Kubinec, Colonel, USAI Installation Commander, Kirtland AFB 120 Date Sign Name Title

METHOD OF SUBMITTAL:

'rint Name

Mail OR Hand deliver (8:00am - 5:00pm ; Monday - Friday) to the Address at the top of Page 1.

# **Emission Estimates**

# Permit 3016-RV2 – U.S. Customs and Border Protection Facility

Emission Unit IDs

19091, 19093, 19102

#### Section 4.1 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19091)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q D A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		X		Π		Х	8,760	• •	2,000	Π	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		х		=		х	8,760	÷	2,000	=	
	CO	0.00668		Х		=		х	8,760	÷	2,000	=	
Diesel	NOx	0.031		Х		=		х	8,760	÷	2,000	=	
<u>&lt; 600 Hp</u>	VOC	0.00247		Х		=		х	8,760	÷	2,000	=	
<u>- 000 mp</u>	SOx	0.00205		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.0022		х		=		х	8,760	÷	2,000	=	
	CO	0.0055	n/a	х	750	=	4.125	х	8,760	÷	2,000	=	18.068
Discol	NOx	0.024	n/a	Х	750	=	18.000	Х	8,760	÷	2,000	=	78.840
Diesel > 600 Hp	**VOC	0.000705	n/a	Х	750	=	0.529	Х	8,760	÷	2,000	=	2.316
> 000 HP	***SOx	0.0000121	n/a	Х	750	=	0.00910	Х	8,760	÷	2,000	=	0.040
	*PM	0.0007	n/a	Х	750	=	0.525	X	8,760	÷	2,000	Π	2.300

* Particulate Matter (PM) emissions are considered to be < 1µm (micron). Therefore, PM emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel =  $1.21 \times 10^{-5}$ .

#### Section 5.1 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19091)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		х		÷	2,000	=	
	CO	0.00668		Х		=		х		÷	2,000	=	
	NOx	0.031		х		=		х		÷	2,000	=	
Diesel	VOC	0.00247		x		=		х		÷	2,000	=	
<u>&lt;</u> 600 Нр	SOx	0.00205		х		=		х		÷	2,000	=	
	*PM	0.0022		х		=		x		÷	2,000	=	
	CO	0.0055	n/a	Х	750	=	4.125	Х	200	÷	2,000	=	0.413
Discul	NOx	0.024	n/a	Х	750	=	18.000	х	200	÷	2,000	=	1.800
Diesel >600 Hp	**VOC	0.000705	n/a	Х	750	=	0.529	Х	200	•	2,000	=	0.053
>000 HP	***\$O _x	0.0000121	n/a	Х	750	=	0.00910	Х	200	÷	2,000	=	0.00091
	*PM	0.0007	n/a	X	750	=	0.525	X	200	÷	2,000	=	0.053

* Particulate Matter (PM) emissions are considered to be  $< 1 \mu m$  (micron). Therefore, PM emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel =  $1.21 \times 10^{-5}$ .

#### Section 4.2 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19093)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D   V   D E	Pounds Per Ton	E Q D A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		X	8,760	+	2,000	=	
Gasoline	SOx	0.000591		Х		=		X	8,760	÷	2,000	=	
	*PM	0.000721		х		=		Х	8,760	÷	2,000	=	
	CO	0.00668		X		=		Х	8,760	÷	2,000	=	
Diesel	NOx	0.031		X		=		Х	8,760	÷	2,000	=	
600 Hp	VOC	0.00247		X		=		Х	8,760	÷	2,000	=	
<u>&lt; 000 mp</u>	SOx	0.00205		х		=		Х	8,760	÷	2,000	=	
	*PM	0.0022		Х		=		Х	8,760	÷	2,000	=	
	CO	0.0055	0.000833	Х	660	=	3.630	Х	8,760	•	2,000	Π	15.899
Discol	NOx	0.024	0.01847	Х	660	=	15.840	X	8,760	÷	2,000	=	69.379
Diesel > 600 Hp	**VOC	0.000705	0.000106	Х	660	=	0.465	X	8,760	÷	2,000	=	2.038
2 000 HP	***SOx	0.0000121	0.0000108	Х	660	=	0.00801	X	8,760	÷	2,000	=	0.035
	*PM	0.0007	0.001879	X	660	=	1.240	X	8,760	<u>+</u>	2,000	Π	5.431

* Particulate Matter (PM) emissions are considered to be  $< 1 \mu m$  (micron). Therefore, PM emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel =  $1.21 \times 10^{-5}$ .

*** The manufacturer SO_x emission factor is calculated as 1.998 x (0.36 lb fuel per hp-hour)  $(0.0015 \text{ wt. }\% \text{ sulfur in diesel fuel/100}) = 1.08 \times 10^{-5}$ .

#### Section 5.2 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19093)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		X		=		Х		• •	2,000	Π	
	SOx	0.000591		Х		=		Х		• •	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	Π	
	CO	0.00668		Х		=		Х		• •	2,000	=	
	NOx	0.031		х		=		х		÷	2,000	=	
Diesel	VOC	0.00247		х		=		х		÷	2,000	=	
<u>&lt;</u> 600 Нр	SOx	0.00205		х		=		x		÷	2,000	=	
	*PM	0.0022		х		=		х		÷	2,000	=	
	CO	0.0055	0.000833	Х	660	=	3.630	Х	200	÷	2,000	=	0.363
D: 1	NOx	0.024	0.01847	Х	660	=	15.840	х	200	÷	2,000	=	1.584
Diesel >600 Hp	**VOC	0.000705	0.000106	Х	660	=	0.465	х	200	÷	2,000	=	0.047
2000 Hp	***SOx	0.0000121	0.0000108	Х	660	=	0.00801	Х	200	÷	2,000	=	0.00080
	*PM	0.0007	0.001879	X	660	=	1.240	X	200	• •	2,000	=	0.124

* Particulate Matter (PM) emissions are considered to be  $< 1 \mu m$  (micron). Therefore, PM emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel =  $1.21 \times 10^{-5}$ .

*** The manufacturer SO_x emission factor is calculated as 1.998 x (0.36 lb fuel per hp-hour) x (0.0015 wt. % sulfur in diesel fuel/100) =  $1.08 \times 10^{-5}$ .

#### Section 4.3 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19102)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q D A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		Π		Х	8,760	• •	2,000	Π	
Gasoline	SOx	0.000591		Х		Π		X	8,760	÷	2,000	Π	
	*PM	0.000721		Х		Ш		Χ	8,760	• •	2,000	=	
	CO	0.00668		Х		=		Х	8,760	÷	2,000	=	
Diesel	NOx	0.031		Х		=		Х	8,760	÷	2,000	=	
<u>&lt; 600 Hp</u>	VOC	0.00247		Х		=		Х	8,760	÷	2,000	=	
<u>- 000 mp</u>	SOx	0.00205		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.0022		Х		ш		Х	8,760	• •	2,000	=	
	CO	0.0055	0.000833	Х	660	=	3.630	Х	8,760	÷	2,000	=	15.899
Discol	NOx	0.024	0.01847	Х	660	=	15.840	X	8,760	÷	2,000	=	69.379
Diesel > 600 Hp	**VOC	0.000705	0.000106	Х	660	=	0.465	X	8,760	÷	2,000	=	2.038
2 000 HP	***SOx	0.0000121	0.0000108	X	660	=	0.00801	X	8,760	÷	2,000	=	0.035
	*PM	0.0007	0.001879	Х	660	=	1.240	Χ	8,760	÷	2,000	Π	5.431

* Particulate Matter (PM) emissions are considered to be  $< 1 \mu m$  (micron). Therefore, PM emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel =  $1.21 \times 10^{-5}$ .

*** The manufacturer SO_x emission factor is calculated as 1.998 x (0.36 lb fuel per hp-hour) k (0.0015 wt. % sulfur in diesel fuel/100) =  $1.08 \times 10^{-5}$ .

#### Section 5.3 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19102)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		• •	2,000	Π	
	SOx	0.000591		X		=		Х		• •	2,000	Π	
	*PM	0.000721		Х		=		Х		÷	2,000	Π	
	CO	0.00668		Х		=		Х		• •	2,000	Π	
	NOx	0.031		х		=		х		÷	2,000	=	
Diesel	VOC	0.00247		х		=		х		÷	2,000	=	
<u>&lt;</u> 600 Hp	SOx	0.00205		х		=		x		÷	2,000	=	
	*PM	0.0022		х		=		х		÷	2,000	=	
	CO	0.0055	0.000833	Х	660	=	3.630	Х	200	÷	2,000	=	0.363
<b>D</b> : 1	NOx	0.024	0.01847	Х	660	=	15.840	х	200	÷	2,000	=	1.584
Diesel >600 Hp	**VOC	0.000705	0.000106	Х	660	=	0.465	х	200	÷	2,000	=	0.047
~000 Hp	***SOx	0.0000121	0.0000108	Х	660	=	0.00801	х	200	÷	2,000	=	0.00080
	*PM	0.0007	0.001879	X	660	=	1.240	X	200	÷	2,000	=	0.124

* Particulate Matter (PM) emissions are considered to be  $< 1 \mu m$  (micron). Therefore, PM emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel =  $1.21 \times 10^{-5}$ .

*** The manufacturer SO_x emission factor is calculated as 1.998 x (0.36 lb fuel per hp-hour) x (0.0015 wt. % sulfur in diesel fuel/100) =  $1.08 \times 10^{-5}$ .

# **Emission Estimates**

## Permit 3031-RV2 – Fire Department Emergency Generators

Emission Unit IDs

19015, 19016, 19019, 19069, 19070, 19071, 19072, 19073, 19074, 19075, 19076, 19129, 19130

#### Section 4.1 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19015)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷.	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		X	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		X	8,760	<u>.</u>	2,000	=	
	CO	0.00668	n/a	X	102	ш	0.681	X	8,760	•	2,000	Π	2.984
Discol	NOx	0.03100	n/a	X	102	Ш	3.162	X	8,760	<u>.</u>	2,000	Π	13.850
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	102	=	0.252	Х	8,760	÷	2,000	=	1.103
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	102	=	0.209	X	8,760	÷	2,000	=	0.916
	*PM	0.00220	n/a	Х	102	=	0.224	X	8,760	÷.	2,000	=	0.983
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	**VOC	0.000705											
, 000 mp	***SOx	0.00001214											
	*PM	0.0007											

*Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as  $0.00809 \times 0.0015$  wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.1 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19015)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

$ \begin{array}{c} \mbox{Engine Fuel Type} \\ Pollutants Factors Factor Fac$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fuel	Pollutants	Emission Factors	Emission Factors	I M E	In	U A L		I M E	Operating	I V I D		U A L	In
Gasoline       No.x       Order to the second seco		CO	0.439		Х		=		Х		÷	2,000	=	
$ \frac{SO_x}{PM} = \frac{0.000591}{NO_x} + \frac{1}{2,000} = \frac{1}{2,000} = \frac{1}{2} + \frac{1}{2,000} = \frac{1}{2,000} + \frac{1}{2,000} = \frac{1}{2,000} + \frac{1}{2,000} = \frac{1}{2,000} + \frac{1}{2,00} + \frac{1}{2,00} + \frac{1}{2,00} + \frac{1}{2,00} + \frac$		NOx	0.011		Х		=		Х		÷	2,000	=	
$\frac{1}{2} + \frac{1}{2} + \frac{1}$	Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
$ \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$		SOx	0.000591		Х		=		Х		÷	2,000	=	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		*PM	0.000721		Х		=		Х		÷	2,000	=	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CO	0.00668	n/a	X	102	Ш	0.681	Х	200	• •	2,000	Ш	0.068
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Discol	NOx	0.03100	n/a	х	102	Ш	3.162	Х	200	÷	2,000	Ш	0.316
SOx         0.00205         n/a         X         102         =         0.209         X         200         ÷         2,000         =         0.021           *PM         0.00220         n/a         X         102         =         0.224         X         200         ÷         2,000         =         0.022           point         X         102         =         0.224         X         200         ÷         2,000         =         0.022           NOx         0.0055         Image: Solid State		VOC	0.00247	n/a	Х	102	=	0.252	Х	200	÷	2,000	=	0.025
Diesel         CO         0.0055         Image: Colored colo	<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	102	=	0.209	Х	200	÷	2,000	=	0.021
Diesel         NOx         0.024         Image: Constraint of the second secon		*PM	0.00220	n/a	X	102	П	0.224	Х	200	÷	2,000	Ш	0.022
Diesel         **VOC         0.000705		CO	0.0055											
>600 Hp         ***SOx         0.000705         Image: Solution of the solut	Diesel	NOx	0.024											
**S0x         0.00001214           *PM         0.0007			0.000705											
	>000 np	***SOx	0.00001214											
		*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.1 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19016 / Unit#2)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	<u>.</u>	2,000	=	
	NOx	0.011		х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		X	8,760	<u>.</u>	2,000	=	
	CO	0.00668	n/a	Х	51	Ш	0.341	X	8,760	<u>.</u>	2,000	Ш	1.494
Diesel	NOx	0.03100	n/a	Х	51	Ш	1.581	Х	8,760	*	2,000	Π	6.925
<u>&lt; 600 Hp</u>	VOC	0.00247	n/a	Х	51	Ш	0.126	Х	8,760	*	2,000	Π	0.552
<u>&lt;</u> 000 mp	SOx	0.00205	n/a	Х	51	=	0.105	Х	8,760	•	2,000	=	0.460
	*PM	0.00220	n/a	х	51	=	0.112	Х	8,760	÷	2,000	=	0.491
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	**VOC	0.000705											
> 000 TIP	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides  $(SO_x)$  emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.1 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19016 / Unit#2)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp-hour)	Manufacturers Emission Factors (Lbs/ Hp-hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х		<u>.</u>	2,000	=	
	NOx	0.011		Х		=		Χ		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	51	=	0.341	Х	200	÷	2,000	=	0.034
Discol	NOx	0.03100	n/a	Х	51	=	1.581	X	200	•	2,000	=	0.158
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	х	51	=	0.126	Х	200	÷	2,000	=	0.013
<u>&lt;</u> 000 HP	SOx	0.00205	n/a	Х	51	=	0.105	Х	200	÷	2,000	=	0.011
	*PM	0.00220	n/a	Х	51	=	0.112	Х	200	÷	2,000	=	0.011
	CO	0.0055											
Diesel	NOx	0.024											
>600 Hp	**VOC	0.000705											
>000 110	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.3 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19019)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	*	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	<u>.</u>	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	÷	2,000	=	
	CO	0.00668	n/a	Х	102	=	0.681	Х	8,760	÷	2,000	=	2.984
Discut	NOx	0.03100	n/a	Х	102	=	3.162	Х	8,760	<u>.</u>	2,000	=	13.850
Diesel	VOC	0.00247	n/a	Х	102	=	0.252	Х	8,760	<u>.</u>	2,000	=	1.103
<u>&lt;</u> 600 Нр	SOx	0.00205	n/a	Х	102	=	0.209	Х	8,760	÷	2,000	=	0.916
	*PM	0.00220	n/a	Х	102	=	0.224	Х	8,760	÷	2,000	=	0.983
	CO	0.0055											
Discol	NOx	0.024											
Diesel > 600 Hp	**VOC	0.000705											
> 000 Hp	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides  $(SO_x)$  emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.3 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19019)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		X		<u>.</u>	2,000	=	
	SOx	0.000591		X		Π		X		<u>.</u>	2,000	Π	
	*PM	0.000721		х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	102	=	0.681	Х	200	÷	2,000	=	0.068
Discol	NOx	0.03100	n/a	Х	102	=	3.162	Х	200	÷	2,000	=	0.316
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	102	=	0.252	Х	200	÷.	2,000	Ш	0.025
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	102	=	0.209	Х	200	÷	2,000	=	0.021
	*PM	0.00220	n/a	Х	102	=	0.224	Х	200	÷	2,000	=	0.022
	CO	0.0055											
Discol	NOx	0.024											
Diesel >600 Hp	**VOC	0.000705											
2000 Hb	***SOx	0.00001214											
	*PM	0.0007	a										

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.4 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19069)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	<u>.</u>	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		X	8,760	<u>.</u>	2,000	=	
	*PM	0.000721		Х		Π		X	8,760	<u>.</u>	2,000	Π	
	CO	0.00668	n/a	Х	340	Ш	2.271	X	8,760	*	2,000	Π	9.948
Discol	NOx	0.03100	n/a	Х	340	ш	10.540	X	8,760	•	2,000	Π	46.165
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	П	0.840	X	8,760	<u>.</u>	2,000	Π	3.678
<u>~ 000 mp</u>	SOx	0.00205	n/a	Х	340	П	0.697	X	8,760	<u>.</u>	2,000	Π	3.053
	*PM	0.00220	n/a	Х	340	Ш	0.748	X	8,760	*	2,000	Π	3.276
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	**VOC	0.000705											
> 000 TIP	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as  $0.00809 \times 0.0015$  wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.4 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19069)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		х		=		Х		<u>.</u>	2,000	=	
	CO	0.00668	n/a	х	340	=	2.271	Х	200	÷.	2,000	=	0.227
Discut	NOx	0.03100	n/a	х	340	=	10.540	Х	200	*	2,000	=	1.054
Diesel	VOC	0.00247	n/a	х	340	=	0.840	Х	200	*	2,000	=	0.084
<u>&lt;</u> 600 Нр	SOx	0.00205	n/a	х	340	=	0.697	Х	200	÷	2,000	=	0.070
	*PM	0.00220	n/a	х	340	=	0.748	Х	200	÷.	2,000	=	0.075
	CO	0.0055											
Discul	NOx	0.024											
Diesel >600 Hp	**VOC	0.000705											
-000 πρ	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.5 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19070)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	• •	2,000	=	
	NOx	0.011		Х		=		Х	8,760	•	2,000	=	
	VOC	0.015		Х		=		х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	х	8,760	÷	2,000	=	9.948
Discut	NOx	0.03100	n/a	Х	340	=	10.540	х	8,760	• •	2,000	=	46.165
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	х	8,760	• •	2,000	=	3.678
<u>&gt; ооо пр</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	8,760	÷	2,000	=	3.053
	*PM	0.00220	n/a	Х	340	=	0.748	Х	8,760	*	2,000	=	3.276
	CO	0.0055											
Discol	NOx	0.024											
Diesel > 600 Hp	**VOC	0.000705											
> 000 mp	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides  $(SO_x)$  emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.5 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19070)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х		<u>.</u>	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	200	÷	2,000	=	0.227
Discol	NOx	0.03100	n/a	Х	340	=	10.540	Х	200	÷	2,000	=	1.054
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	Х	200	÷	2,000	=	0.084
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	200	÷	2,000	=	0.070
	*PM	0.00220	n/a	Х	340	=	0.748	Х	200	÷	2,000	=	0.075
	CO	0.0055											
Discol	NOx	0.024											
Diesel >600 Hp	**VOC	0.000705											
2000 HP	***\$O _x	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.6 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19071)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q D A L S	Emission In Tons / Year
	CO	0.439		X		=		X	8,760	*	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	<u>.</u>	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	8,760	*	2,000	=	9.948
Dissel	NOx	0.03100	n/a	Х	340	=	10.540	х	8,760	÷	2,000	=	46.165
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	х	8,760	÷	2,000	=	3.678
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	8,760	÷	2,000	=	3.053
	*PM	0.00220	n/a	Х	340	=	0.748	Х	8,760	÷	2,000	=	3.276
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	**VOC	0.000705											
2 000 TIP	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides  $(SO_x)$  emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.6 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19071)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х		÷	2,000	=	
	NOx	0.011		X		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	200	÷	2,000	=	0.227
Discol	NOx	0.03100	n/a	Х	340	=	10.540	Х	200	÷	2,000	=	1.054
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	Х	200	÷	2,000	=	0.084
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	200	÷	2,000	=	0.070
	*PM	0.00220	n/a	Х	340	=	0.748	Х	200	÷	2,000	=	0.075
	CO	0.0055											
Discol	NOx	0.024											
Diesel >600 Hp	**VOC	0.000705											
>000 HP	***SOx	0.00001214											
	*PM	0.0007	a										

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.7 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19072)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Χ	8,760	÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	8,760	÷	2,000	=	9.948
Discol	NOx	0.03100	n/a	Х	340	=	10.540	Х	8,760	÷	2,000	=	46.165
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	Х	8,760	÷	2,000	=	3.678
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	8,760	÷	2,000	=	3.053
	*PM	0.00220	n/a	Х	340	=	0.748	Х	8,760	÷.	2,000	=	3.276
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	**VOC	0.000705											
> 000 mp	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides  $(SO_x)$  emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.7 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19072)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		X		=		Х		<u>.</u>	2,000	=	
	NOx	0.011		Х		=		Х		•	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	200	÷	2,000	=	0.227
Discol	NOx	0.03100	n/a	Х	340	=	10.540	Х	200	÷	2,000	=	1.054
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	х	340	=	0.840	Х	200	÷	2,000	=	0.084
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	200	÷	2,000	=	0.070
	*PM	0.00220	n/a	Х	340	=	0.748	Х	200	÷	2,000	=	0.075
	CO	0.0055											
Diesel	NOx	0.024											
>600 Hp	**VOC	0.000705											
~000 np	***\$O _x	0.00001214											
+ D - 1 - 1 -	*PM	0.0007	() ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )										

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.8 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19073)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	8,760	÷	2,000	=	9.948
Discul	NOx	0.03100	n/a	Х	340	=	10.540	Х	8,760	<u>.</u>	2,000	=	46.165
Diesel	VOC	0.00247	n/a	Х	340	=	0.840	Х	8,760	*	2,000	=	3.678
<u>&lt;</u> 600 Нр	SOx	0.00205	n/a	Х	340	=	0.697	Х	8,760	*	2,000	=	3.053
	*PM	0.00220	n/a	Х	340	=	0.748	Х	8,760	÷	2,000	=	3.276
	CO	0.0055											
Discol	NOx	0.024											
Diesel > 600 Hp	**VOC	0.000705											
> 000 Hp	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides  $(SO_x)$  emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.8 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19073)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		X		•	2,000	=	
	NOx	0.011		Х		=		Х		÷.	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷.	2,000	=	
	SOx	0.000591		Х		=		X		+	2,000	=	
	*PM	0.000721		Х		=		Х		•	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	200	÷	2,000	=	0.227
Discol	NOx	0.03100	n/a	Х	340	=	10.540	Х	200	÷	2,000	=	1.054
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	Х	200	÷	2,000	=	0.084
<u>&gt; ооо пр</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	200	÷	2,000	=	0.070
	*PM	0.00220	n/a	Х	340	=	0.748	Х	200	÷	2,000	=	0.075
	CO	0.0055											
Diesel	NOx	0.024											
>600 Hp	**VOC	0.000705											
2000 Tip	***SOx	0.00001214											
	*PM	0.0007	. (Leat DM										

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.9 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19074)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D   V   D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	8,760	÷	2,000	=	9.948
Discol	NOx	0.03100	n/a	Х	340	=	10.540	Х	8,760	÷	2,000	=	46.165
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	х	340	=	0.840	Х	8,760	÷	2,000	=	3.678
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	8,760	÷	2,000	=	3.053
	*PM	0.00220	n/a	Х	340	=	0.748	Х	8,760	÷	2,000	=	3.276
	CO	0.0055											
Discol	NOx	0.024											
Diesel > 600 Hp	**VOC	0.000705											
2 000 HP	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides  $(SO_x)$  emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.9 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19074)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х		•	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	200	÷	2,000	=	0.227
Discut	NOx	0.03100	n/a	Х	340	=	10.540	Х	200	÷	2,000	=	1.054
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	Х	200	÷	2,000	=	0.084
<u>~ ооо пр</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	200	÷	2,000	=	0.070
	*PM	0.00220	n/a	Х	340	=	0.748	Х	200	÷	2,000	=	0.075
	CO	0.0055											
Discol	NOx	0.024											
Diesel >600 Hp	**VOC	0.000705											
~000 Hp	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.10 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19075)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	<u>.</u>	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	<u>.</u>	2,000	=	
	CO	0.00668	n/a	X	340	=	2.271	Х	8,760	•	2,000	Ш	9.948
Discol	NOx	0.03100	n/a	Х	340	=	10.540	Х	8,760	÷	2,000	Ш	46.165
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	х	8,760	÷	2,000	=	3.678
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	8,760	÷	2,000	=	3.053
	*PM	0.00220	n/a	Х	340	=	0.748	Х	8,760	÷	2,000	=	3.276
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	**VOC	0.000705											
2 000 HP	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides  $(SO_x)$  emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.10 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19075)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		X		=		Х		<u>.</u>	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		х		÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	х	200	÷	2,000	=	0.227
Discul	NOx	0.03100	n/a	Х	340	=	10.540	Х	200	÷	2,000	=	1.054
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	Х	200	÷	2,000	=	0.084
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	200	•	2,000	=	0.070
	*PM	0.00220	n/a	Х	340	=	0.748	Х	200	•	2,000	=	0.075
	CO	0.0055											
Diesel	NOx	0.024											
>600 Hp	**VOC	0.000705											
~000 Hp	***\$Ox	0.00001214											
* D ( 1 )	*PM	0.0007	() ( D) ( ) 1 D										

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.11 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19076)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		X	8,760	<u>.</u>	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		X	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Χ	8,760	<u>.</u>	2,000	=	
	CO	0.00668	n/a	X	340	=	2.271	X	8,760	•	2,000	Ш	9.948
Discol	NOx	0.03100	n/a	Х	340	=	10.540	х	8,760	÷	2,000	Ш	46.165
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	Х	8,760	÷	2,000	=	3.678
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	8,760	÷	2,000	=	3.053
	*PM	0.00220	n/a	Х	340	=	0.748	Х	8,760	÷	2,000	=	3.276
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	**VOC	0.000705											
2 000 mp	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides  $(SO_x)$  emission factor is calculated as 0.00809 x 0.0015 wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.11 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19076)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х		•	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	340	=	2.271	Х	200	÷	2,000	=	0.227
Discul	NOx	0.03100	n/a	Х	340	=	10.540	Х	200	•••	2,000	=	1.054
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	340	=	0.840	Х	200	• •	2,000	=	0.084
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	340	=	0.697	Х	200	*	2,000	=	0.070
	*PM	0.00220	n/a	Х	340	=	0.748	Х	200	• •	2,000	=	0.075
	CO	0.0055											
Diesel	NOx	0.024											
>600 Hp	**VOC	0.000705											
2000 HP	***SOx	0.00001214											
* D ( 1 )	*PM	0.0007	() ( D) ( 1 D										

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.12 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19129)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		X		=		Х	8,760	*	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		X		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	<u>.</u>	2,000	=	
	CO	0.00668	n/a	X	207	=	1.383	Х	8,760	•	2,000	=	6.056
Discol	NOx	0.03100	n/a	X	207	=	6.417	Х	8,760	<u>.</u>	2,000	=	28.106
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	207	=	0.511	х	8,760	÷	2,000	=	2.239
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	207	=	0.424	Х	8,760	÷	2,000	=	1.859
	*PM	0.00220	n/a	Х	207	=	0.455	Х	8,760	<u>.</u>	2,000	=	1.995
	CO	0.0055						Х	8,760	÷	2,000	=	
Diesel	NOx	0.024						Х	8,760	÷	2,000	=	
> 600 Hp	**VOC	0.000705											
2 000 TIP	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as  $0.00809 \times 0.0015$  wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.12 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19129)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

				-				1		_			
Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	т I M E S	Size of Engine In Horsepower	<b>ビ Q つ イ L の</b>	Emissions in Lbs / Hour	T I E S	Requested Operating Hours / Year	D I V D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		X		<u>.</u>	2,000	=	
	NOx	0.011		X		=		Х		*	2,000	=	
Gasoline	VOC	0.015		X		=		X		*	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	207	=	1.383	Х	200	÷	2,000	=	0.138
Discol	NOx	0.03100	n/a	Х	207	=	6.417	Х	200	÷	2,000	=	0.642
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247	n/a	Х	207	=	0.511	Х	200	÷	2,000	=	0.051
<u>~ 000 np</u>	SOx	0.00205	n/a	Х	207	=	0.424	Х	200	÷	2,000	=	0.042
	*PM	0.00220	n/a	Х	207	=	0.455	Х	200	÷	2,000	=	0.046
	CO	0.0055						Х		÷	2,000	=	
Diesel	NOx	0.024						X		÷	2,000	=	
>600 Hp	**VOC	0.000705											
2000 HP	***SOx	0.00001214											
	*PM	0.0007											

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

#### Section 4.13 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19130)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D   V   D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		х	8,760	• •	2,000	=	
	NOx	0.011		Х		=		Х	8,760	•	2,000	=	
Gasoline	VOC	0.015		X		=		х	8,760	• •	2,000	=	
	SOx	0.000591		X		=		х	8,760	÷ •	2,000	=	
	*PM	0.000721		X		=		Х	8,760	• •	2,000	=	
	CO	0.00668		Х		=		х	8,760	÷	2,000	=	
Diesel	NOx	0.03100		X		=		х	8,760	• •	2,000	=	
< 600 Hp	VOC	0.00247		X		=		х	8,760	•l•	2,000	=	
<u>~ 000 mp</u>	SOx	0.00205		X		=		х	8,760	• •	2,000	=	
	*PM	0.00220		Х		=		х	8,760	÷	2,000	=	
	CO	0.0055	0.01874	Х	1186	=	22.226	х	8,760	÷	2,000	=	97.350
Discol	NOx	0.024	0.01521	Х	1186	=	28.464	х	8,760	÷	2,000	=	124.672
Diesel > 600 Hp	**VOC	0.000705	0.002205	Х	1186	=	2.615	Х	8,760	•	2,000	=	11.454
> 000 mp	***SOx	0.00001214	n/a	Х	1186	=	0.014	Х	8,760	•	2,000	=	0.061
	*PM	0.0007	0.00088	X	1186	=	1.044	X	8,760	÷	2,000	=	4.573

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as  $0.00809 \times 0.0015$  wt. % sulfur in diesel fuel = 0.00001214.

#### Section 5.13 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19130)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		X		=		Х		<u>.</u>	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		X		=		Х		÷	2,000	=	
	SOx	0.000591		X		=		Χ		•	2,000	=	
	*PM	0.000721		X		=		X		۰ŀ۰	2,000	=	
	CO	0.00668		Х		=		Х		÷	2,000	=	
Discol	NOx	0.03100		Х		=		Х		÷	2,000	=	
Diesel <u>&lt;</u> 600 Hp	VOC	0.00247		X		=		Х		÷	2,000	=	
<u>~ 000 np</u>	SOx	0.00205		X		=		X		÷	2,000	=	
	*PM	0.00220		Х		=		Х		÷	2,000	=	
	CO	0.0055	0.01874	X	1186	=	22.226	Х	200	÷.	2,000	=	2.223
Discol	NOx	0.024	0.01521	X	1186	=	28.464	Х	200	÷.	2,000	=	2.846
Diesel >600 Hp	**VOC	0.000705	0.002205	Х	1186	=	2.615	Х	200	•	2,000	=	0.262
2000 HP	***\$O _x	0.00001214	n/a	Х	1186	=	0.014	Х	200	•	2,000	=	0.001
	*PM	0.0007	0.00088	X	1186	=	1.044	Х	200	• •	2,000	=	0.104

* Particulate matter (PM) emissions also reflect PM₁₀ and PM_{2.5} emissions.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

# **Emission Estimates**

# Permit 3032-M1 Power Production Emergency Generators

Emission Unit IDs

19003, 19006, 19032, 19094, 19096, 19106, 19142, 19143, 19154, 19168, 19176, 19177

#### Section 4.1 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19003)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	л у с Ю п	Emission In Tons / Year
	CO	0.439		X		=		X	8,760	<u>.</u>	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	<u>.</u>	2,000	=	
	CO	0.00668	n/a	Х	135	П	0.902	Х	8,760	•	2,000	Ш	3.950
Discol	NOx	0.03100	n/a	Х	135	=	4.185	Х	8,760	÷	2,000	=	18.330
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	n/a	Х	135	=	0.333	Х	8,760	÷	2,000	=	1.461
<u>&lt; 000 np</u>	SOx	0.00205	n/a	Х	135	=	0.277	Х	8,760	÷	2,000	=	1.212
	*PM	0.00220	n/a	Х	135	=	0.297	Х	8,760	÷	2,000	=	1.301
	CO	0.0055											
Discol	NOx	0.024											
Diesel > 600 Hp	VOC	0.000705											
> 000 Hp	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.1 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19003)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		х		=		Х		÷	2,000	=	
	NOx	0.011		х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		х		=		Х		•	2,000	=	
	SOx	0.000591		х		=		Х		÷	2,000	=	
	*PM	0.000721		х		=		Х		*	2,000	=	
	CO	0.00668	n/a	х	135	=	0.902	Х	200	• •	2,000	=	0.090
<b>D</b> : 1	NOx	0.03100	n/a	х	135	=	4.185	Х	200	÷	2,000	=	0.419
Diesel	**VOC	0.00247	n/a	х	135	=	0.333	Х	200	• •	2,000	=	0.033
<u>&lt;</u> 600 Hp	SOx	0.00205	n/a	х	135	=	0.277	Х	200	÷	2,000	=	0.028
	*PM	0.00220	n/a	х	135	=	0.297	Х	200	÷	2,000	=	0.030
	CO	0.0055											
Diesel	NOx	0.024											
>600 Hp	VOC	0.000705											
>000 np	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM10 & PM2.5.

#### Section 4.3 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19006)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	÷	2,000	=	
	CO	0.00668	n/a	Х	102	=	0.681	Х	8,760	÷	2,000	=	2.984
Discut	NOx	0.03100	n/a	Х	102	=	3.162	Х	8,760	*	2,000	=	13.850
Diesel	**VOC	0.00247	n/a	Х	102	=	0.252	Х	8,760	*	2,000	=	1.103
<u>&lt;</u> 600 Hp	SOx	0.00205	n/a	Х	102	=	0.209	х	8,760	<u>.</u>	2,000	=	0.916
	*PM	0.00220	n/a	Х	102	=	0.224	Х	8,760	*	2,000	=	0.983
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
> 000 HP	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.3 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19006)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷.	2,000	=	
Gasoline	VOC	0.015		Х		=		X		*	2,000	=	
	SOx	0.000591		Х		=		X		<u>.</u>	2,000	=	
	*PM	0.000721		Х		Ш		X		<u>.</u>	2,000	=	
	CO	0.00668	n/a	Х	102	=	0.681	Х	200	÷.	2,000	=	0.068
Diesel	NOx	0.03100	n/a	X	102	Ш	3.162	X	200	*	2,000	=	0.316
<u>&lt; 600 Hp</u>	**VOC	0.00247	n/a	Х	102	Ш	0.252	X	200	*	2,000	=	0.025
<u>~ 000 mp</u>	SOx	0.00205	n/a	Х	102	=	0.209	X	200	•	2,000	=	0.021
	*PM	0.00220	n/a	х	102	=	0.224	х	200	÷.	2,000	=	0.022
	CO	0.0055											
Diesel	NOx	0.024											
>600 Hp	VOC	0.000705											
	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

#### Section 4.5 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19032)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I E S	Potential Operating Hours / Year	D   V   D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	*	2,000	=	
	NOx	0.011		х		=		х	8,760	÷	2,000	=	
	VOC	0.015		х		=		х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		Х		П		Х	8,760	•	2,000	Π	
	CO	0.00668	n/a	Х	465	=	3.106	Х	8,760	÷	2,000	=	13.605
Discol	NOx	0.03100	n/a	Х	465	=	14.415	Х	8,760	÷	2,000	=	63.138
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	n/a	Х	465	=	1.149	Х	8,760	÷	2,000	=	5.031
<u>&gt; 000 np</u>	SOx	0.00205	n/a	Х	465	=	0.953	Х	8,760	÷	2,000	=	4.175
	*PM	0.00220	n/a	х	465	Ш	1.023	х	8,760	÷	2,000	Π	4.481
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
× 000 mp	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.5 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19032)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		X		=		Х		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	465	=	3.106	х	200	÷	2,000	=	0.311
Dissel	NOx	0.03100	n/a	Х	465	=	14.415	х	200	÷	2,000	=	1.442
	**VOC	0.00247	n/a	Х	465	=	1.149	Х	200	*	2,000	=	0.115
<u>&lt;</u> 600 Hp	SOx	0.00205	n/a	Х	465	=	0.953	х	200	÷	2,000	=	0.095
	*PM	0.00220	n/a	Х	465	=	1.023	Х	200	÷.	2,000	=	0.102
	CO	0.0055											
Discol	NOx	0.024											
Diesel > 600 Hp	VOC	0.000705											
> 000 Hp	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

#### Section 4.13 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19094)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	•	2,000	=	
	NOx	0.011		Х		=		х	8,760	•	2,000	=	
	VOC	0.015		Х		=		х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		X		=		Х	8,760	• •	2,000	=	
	*PM	0.000721		X		П		Х	8,760	• •	2,000	Π	
	CO	0.00668	0.01056	Х	68	=	0.718	Х	8,760	<u>+</u>	2,000	=	3.145
Dissel	NOx	0.03100	0.01642	Х	68	=	2.108	Х	8,760	÷	2,000	=	9.233
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	0.00060	Х	68	=	0.168	Х	8,760	÷	2,000	=	0.736
<u>~ 000 np</u>	SOx	0.00205	0.00141	Х	68	=	0.139	Х	8,760	÷	2,000	=	0.611
	*PM	0.00220	n/a	Х	68	Ш	0.150	х	8,760	÷	2,000	II	0.655
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
2 000 mp	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.13 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19094)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		X		=		X		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷.	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	СО	0.00668	0.01056	Х	68	=	0.718	Х	200	<u>.</u>	2,000	=	0.072
Discol	NOx	0.03100	0.01642	Х	68	=	2.108	Х	200	÷	2,000	=	0.211
Diesel < 600 Hp	**VOC	0.00247	0.00060	Х	68	=	0.168	Х	200	÷	2,000	=	0.017
<u>&gt; 000 np</u>	SOx	0.00205	0.00141	Х	68	=	0.139	Х	200	*	2,000	=	0.014
	*PM	0.00220	n/a	Х	68	=	0.150	Х	200	÷	2,000	=	0.015
	CO	0.0055											
Discol	NOx	0.024											
Diesel > 600 Hp	VOC	0.000705											
> 000 HP	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

#### Section 4.14 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19096)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D   V   D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		X	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		X	8,760	÷	2,000	=	
	CO	0.00668	0.00728	Х	568	Ш	4.134	Х	8,760	• •	2,000	Ш	18.105
Discol	NOx	0.03100	0.02290	Х	568	Ш	17.608	X	8,760	÷	2,000	Π	77.123
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	0.00060	Х	568	=	1.403	Х	8,760	÷	2,000	=	6.145
<u>~ 000 np</u>	SOx	0.00205	0.00349	Х	568	=	1.984	Х	8,760	÷	2,000	=	8.690
	*PM	0.00220	n/a	Х	568	Ш	1.250	Х	8,760	• •	2,000	Ш	5.473
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
2 000 mp	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.14 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19096)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х		• •	2,000	=	
Gasoline	NOx	0.011		Х		=		Х		÷	2,000	=	
	VOC	0.015		Х		=		Х		<u>+</u>	2,000	=	
	SOx	0.000591		Х		=		Х		• •	2,000	Π	
	*PM	0.000721		Х		=		Х		<u>.</u>	2,000	Ш	
	CO	0.00668	0.00728	Х	568	=	4.134	Х	200	÷	2,000	=	0.413
Dissel	NOx	0.03100	0.02290	Х	568	=	17.608	Х	200	÷	2,000	=	1.761
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	0.00060	Х	568	=	1.403	Х	200	÷	2,000	=	0.140
<u>~ 000 np</u>	SOx	0.00205	0.00349	Х	568	=	1.984	Х	200	÷	2,000	=	0.198
	*PM	0.00220	n/a	Х	568	=	1.250	Х	200	÷	2,000	=	0.125
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
2 000 HP	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

#### Section 4.15 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19106)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D   V   D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	•	2,000	=	
	NOx	0.011		х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		X	8,760	÷	2,000	=	
	*PM	0.000721		Х		=		X	8,760	÷	2,000	=	
	CO	0.00668	0.00725	Х	166	Ш	1.204	Х	8,760	• •	2,000	Ш	5.274
Discol	NOx	0.03100	0.02348	Х	166	Ш	5.146	X	8,760	÷	2,000	Π	22.539
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	0.00071	Х	166	=	0.410	Х	8,760	÷	2,000	=	1.796
<u>&lt; 000 np</u>	SOx	0.00205	0.0013	Х	166	=	0.340	Х	8,760	÷	2,000	=	1.491
	*PM	0.00220	0.00055	Х	166	Ш	0.365	Х	8,760	• •	2,000	Ш	1.600
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
2 000 mp	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.15 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit 19106)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х		• •	2,000	=	
	NOx	0.011		X		=		X		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		<u>+</u>	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	0.00725	Х	166	=	1.204	Х	200	÷	2,000	=	0.120
Discul	NOx	0.03100	0.02348	Х	166	=	5.146	Х	200	÷	2,000	=	0.515
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	0.00071	Х	166	=	0.410	Х	200	÷	2,000	=	0.041
<u>&lt; 000 np</u>	SOx	0.00205	0.0013	Х	166	=	0.340	Х	200	• •	2,000	=	0.034
	*PM	0.00220	0.00055	Х	166	=	0.365	Х	200	• •	2,000	=	0.037
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
2 000 HP	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

#### Section 4.18 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19142)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		х		=		х	8,760	<u>.</u>	2,000	=	
	NOx	0.011		х		=		х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		Х		=		Х	8,760	÷	2,000	=	
	*PM	0.000721		х		=		х	8,760	÷	2,000	=	
	CO	0.00668	n/a	х	102	Ш	0.681	х	8,760	÷	2,000	Π	2.984
Diesel	NOx	0.03100	n/a	х	102	Ш	3.162	х	8,760	÷	2,000	Π	13.850
<u>&lt; 600 Hp</u>	**VOC	0.00247	n/a	х	102	=	0.252	х	8,760	÷	2,000	=	1.103
<u>&lt; 000 np</u>	SOx	0.00205	n/a	х	102	=	0.209	х	8,760	÷	2,000	=	0.916
	*PM	0.00220	n/a	х	102	Ш	0.224	х	8,760	÷	2,000	Π	0.983
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
2 000 mp	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.18 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19142)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		х		=		Х		<u>.</u>	2,000	I	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	х	102	=	0.681	Х	200	÷	2,000	=	0.068
Discul	NOx	0.03100	n/a	х	102	=	3.162	Х	200	÷	2,000	=	0.316
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	n/a	Х	102	=	0.252	Х	200	÷	2,000	=	0.025
<u>&lt;</u> 000 np	SOx	0.00205	n/a	х	102	=	0.209	Х	200	÷	2,000	=	0.021
	*PM	0.00220	n/a	Х	102	=	0.224	Х	200	*	2,000	=	0.022
	CO	0.0055											
Discol	NOx	0.024											
Diesel > 600 Hp	VOC	0.000705											
> 000 Hp	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

#### Section 4.19 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19143)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	•	2,000	=	
	NOx	0.011		Х		=		х	8,760	•	2,000	=	
	VOC	0.015		Х		=		х	8,760	•	2,000	=	
Gasoline	SOx	0.000591		X		=		Х	8,760	• •	2,000	=	
	*PM	0.000721		X		П		Х	8,760	• •	2,000	Π	
	CO	0.00668	n/a	Х	50	=	0.334	Х	8,760	<u>+</u>	2,000	=	1.463
Discol	NOx	0.03100	n/a	Х	50	Ш	1.550	Х	8,760	÷ŀ•	2,000	Π	6.789
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	n/a	Х	50	=	0.124	Х	8,760	÷	2,000	=	0.541
<u>~ 000 np</u>	SOx	0.00205	n/a	Х	50	=	0.103	Х	8,760	÷	2,000	=	0.449
	*PM	0.00220	n/a	Х	50	Ш	0.110	х	8,760	÷	2,000	II	0.482
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
2 000 Hp	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.19 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19143)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Χ		=		X		•	2,000	=	
	NOx	0.011		Х		=		Х		÷.	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷.	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	Х	50	=	0.334	Х	200	÷	2,000	=	0.033
Discul	NOx	0.03100	n/a	Х	50	=	1.550	Х	200	÷	2,000	=	0.155
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	n/a	Х	50	=	0.124	Х	200	÷	2,000	=	0.012
<u>&gt; 000 пр</u>	SOx	0.00205	n/a	Х	50	=	0.103	Х	200	• •	2,000	=	0.010
	*PM	0.00220	n/a	Х	50	=	0.110	Х	200	•	2,000	=	0.011
	CO	0.0055											
Discol	NOx	0.024											
Diesel > 600 Hp	VOC	0.000705											
> 000 np	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

#### Section 4.22 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19154)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-hr) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH air contaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q D A L S	Emission In Tons / Year
	CO	0.439		X		=		Х	8,760	÷	2,000	=	
	NOx	0.011		Х		=		Х	8,760	*	2,000	=	
	VOC	0.015		X		Π		Х	8,760	<u>.</u>	2,000	Π	
Gasoline	SOx	0.000591		Х		Π		Х	8,760	<u>.</u>	2,000	Π	
	*PM	0.000721		Х		Π		Х	8,760	*	2,000	Π	
	CO	0.00668	n/a	Х	65.6	ш	0.438	Х	8,760	•	2,000	=	1.919
Diesel	NOx	0.03100	n/a	Х	65.6	=	2.034	х	8,760	÷	2,000	=	8.907
<u>&lt; 600 Hp</u>	**VOC	0.00247	n/a	Х	65.6	=	0.162	Х	8,760	÷	2,000	=	0.710
<u>- 000 mp</u>	SOx	0.00205	n/a	Х	65.6	=	0.134	Х	8,760	÷	2,000	=	0.589
	*PM	0.00220	n/a	х	65.6	=	0.144	х	8,760	÷	2,000	=	0.632
	CO	0.0055		Х		=		х	8,760	÷	2,000	=	
Dissol	NOx	0.024		Х		=		Х	8,760	•	2,000	=	
Diesel > 600 Hp	VOC	0.000705		Х		=		Х	8,760	•	2,000	=	
> 000 TIP	SOx	0.003236		Х		Ш		Х	8,760	<u>.</u>	2,000	=	
	*PM	0.0007		Х		=		Х	8,760	•	2,000	=	

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.22 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19154)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	EQUALS	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		X		÷	2,000	=	
	NOx	0.011		Х		=		х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		<u>.</u>	2,000	=	
	SOx	0.000591		X		=		Х		÷	2,000	=	
	*PM	0.000721		Х		Ш		х		<u>+</u>	2,000	=	
	CO	0.00668	n/a	X	65.6	Ш	0.438	Х	200	<u>.</u>	2,000	=	0.044
Diesel	NOx	0.03100	n/a	X	65.6	Ш	2.034	Х	200	*	2,000	=	0.203
<u>&lt; 600 Hp</u>	**VOC	0.00247	n/a	Х	65.6	Ш	0.162	Х	200	*	2,000	=	0.016
<u>&lt; 000 mp</u>	SOx	0.00205	n/a	Х	65.6	Ш	0.134	х	200	÷.	2,000	=	0.013
	*PM	0.00220	n/a	X	65.6	=	0.144	х	200	÷	2,000	=	0.014
	CO	0.0055		Х		Π		Х		<u>.</u>	2,000	=	
Dissel	NOx	0.024		Х		Ш		х		<u>+</u>	2,000	=	
Diesel >600 Hp	VOC	0.000705		Χ		=		Х		•	2,000	=	
2000 HP	SOx	0.003236		Χ		=		Х		÷	2,000	=	
	*PM	0.0007		Х		=		Х		÷	2,000	=	

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

#### Section 4.23 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19168)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-ht) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH aircontaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		Х		=		Х	8,760	÷	2,000	=	
	VOC	0.015		Х		=		Х	8,760	÷	2,000	=	
Gasoline	SOx	0.000591		X		=		X	8,760	*	2,000	=	
	*PM	0.000721		Х		=		Х	8,760	÷	2,000	=	
	CO	0.00668	n/a	Х	25	=	0.167	Х	8,760	÷	2,000	=	0.731
Discol	NOx	0.03100	n/a	Х	25	=	0.775	Х	8,760	÷	2,000	=	3.395
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	n/a	Х	25	=	0.062	Х	8,760	÷	2,000	=	0.270
<u>- 000 mp</u>	SOx	0.00205	n/a	X	25	Ш	0.051	Χ	8,760	÷	2,000	=	0.224
	*PM	0.00220	n/a	Х	25	=	0.055	Х	8,760	÷	2,000	=	0.241
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
2 000 TIP	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for the exhaust portion of Total Organic Compounds (TOC).

#### Section 5.23 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19168)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	EQUALS	Emission In Tons / Year
	CO	0.439		Х		=		Х		÷	2,000	=	
	NOx	0.011		х		=		х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		Х		÷	2,000	=	
	*PM	0.000721		Х		=		Х		÷	2,000	=	
	CO	0.00668	n/a	х	25	=	0.167	Х	200	÷	2,000	=	0.017
Discol	NOx	0.03100	n/a	Х	25	=	0.775	Х	200	÷	2,000	=	0.078
Diesel <u>&lt;</u> 600 Hp	**VOC	0.00247	n/a	х	25	=	0.062	Х	200	÷	2,000	=	0.006
<u>&gt; 000 np</u>	SOx	0.00205	n/a	х	25	=	0.051	х	200	÷	2,000	=	0.005
	*PM	0.00220	n/a	х	25	=	0.055	х	200	÷	2,000	=	0.006
	CO	0.0055											
Diesel	NOx	0.024											
> 600 Hp	VOC	0.000705											
> 000 HP	SOx	0.003236											
	*PM	0.0007											

* Particulate Matter (PM) emissions also reflect PM₁₀ & PM_{2.5}.

#### Section 4.1 Potential Emission Rate Uncontrolled Emissions (Unit ID 19176)

Use manufacturer's data, compliance performance stack test data or the attached USEPA Emission Factors in grams per horsepower-hour
(g/Hp-hr) associated with the Engine's Horsepower Rating and Model Year

Model Year	Pollutant	Emission Factors g/Hp-hr	T I M E S	Actual Engine Hp	E Q U A L S	Emission In Grams Per Hour	D I V I D E	Grams Per Pound	E Q U A L S	Emission in Pounds Per Hour	T I M E S	Potential Operating Hours Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons Per Year
	CO	2.60	x	755	II	1963.0	÷	453.6		4.33	x	8,760	÷	2,000	II	18.95
	NOx	4.25	x	755	=	3208.75	÷	453.6	=	7.07	x	8,760	÷	2,000	II	30.98
Likely	NMHC	0.06	x	755	II	45.30	÷	453.6		0.10	x	8,760	÷	2,000	II	0.44
~2016	*NOx + NMHC	4.80	x	755	=	3624.0	÷	453.6	=	7.99	x	8,760	÷	2,000	=	34.99
	**SOx	0.01	x	755	=	4.16	÷	453.6	=	0.01	x	8,760	÷	2,000	=	0.040
	***PM	0.15	x	755	=	113.25	÷	453.6	=	0.25	x	8,760	÷	2,000	=	1.09

* If the USEPA Emission Factor or manufacturer's data is given as combined NOx + NMHC, also provide individual emission factors for NOx and NMHC from the manufacturer or other approved methodology for estimating individual emission factors.

** Manufacturer's SOx factor shall be used when larger than the USEPA Emission Factor.

*** Particulate Matter (PM) emissions are considered to be < 1µm (micron). Therefore, PM emissions also reflect PM10 & PM2.5.

#### Section 5.1 Potential to Emit (Requested allowable rate) (Controlled Emissions) (Unit ID 19176)

Transfer each pollutant Emission in Pounds Per Hour from column above to the Emission in Pounds Per Hour column below. Complete the equation after inserting the Requested Operating Hours Per Year. Pound Per Hour rate for each pollutant must be met if performance testing is requested.

Pollutant	Emission in Pounds Per Hour	T I M E S	Requested Operating Hours Per Year	E Q U A L S	Pounds Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons Per Year
СО	4.33	x	200	=	865.52	÷	2,000	=	0.43
NO _x	7.07	X	200	=	1414.79	÷	2,000	II	0.71
NMHC	0.10	X	200	=	19.97	÷	2,000	II	0.010
*NOx + NMHC	7.99	x	200	=	1597.88	÷	2,000	=	0.799
**SOx	0.01	x	200	=	1.83	÷	2,000	=	0.001
***PM	0.25	х	200	=	49.93	÷	2,000	=	0.025

#### Section 4.2 Potential Emission Rate (Uncontrolled Emissions) (Unit ID 19177)

Use manufacturer's data, compliance performance stack test data or the attached USEPA Emission Factors in grams per horsepower-hour (g/Hp-hr) associated with the Engine's Horsepower Rating and Model Year

Model Year	Pollutant	Emission Factors g/Hp-hr	T I M E S	Actual Engine Hp	E Q U A L S	Emission In Grams Per Hour	D I V I D E	Grams Per Pound	E Q U A L S	Emission in Pounds Per Hour	T I M E S	Potential Operating Hours Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons Per Year
	CO	2.60	x	755	=	1963.0	÷	453.6	=	4.33	x	8,760	÷	2,000	=	18.95
	NOx	4.25	x	755	=	3208.75	÷	453.6	=	7.07	x	8,760	÷	2,000	=	30.98
Likely	NMHC	0.06	x	755	=	45.30	÷	453.6	=	0.10	x	8,760	÷	2,000	=	0.44
~2016	*NOx + NMHC	4.80	x	755	=	3624.0	÷	453.6	=	7.99	x	8,760	÷	2,000	=	34.99
	**SO _x	0.01	x	755	=	4.16	÷	453.6	=	0.01	x	8,760	÷	2,000	=	0.040
	***PM	0.15	x	755	=	113.25	÷	453.6	=	0.25	x	8,760	÷	2,000	=	1.09

* If the USEPA Emission Factor or manufacturer's data is given as combined NOx + NMHC, also provide individual emission factors for NOx and NMHC from the manufacturer or other approved methodology for estimating individual emission factors.

** Manufacturer's SOx factor shall be used when larger than the USEPA Emission Factor.

*** Particulate Matter (PM) emissions are considered to be < 1µm (micron) Therefore, PM emissions also reflect PM10 & PM2.5.

## Section 5.2 Potential to Emit (Requested allowable rate) (Controlled Emissions) (Unit ID 19177)

Transfer each pollutant Emission in Pounds Per Hour from column above to the Emission in Pounds Per Hour column below. Complete the equation after inserting the <u>Requested Operating Hours Per Y</u> ear. Pound Per Hour rate for each pollutant must be met if performance testing is requested.

Pollutant	Emission in Pounds Per Hour	T I M E S	Requested Operating Hours Per Year	E Q U A L S	Pounds Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons Per Year
CO	4.33	x	200	=	865.52	÷	2,000	=	0.43
NOx	7.07	x	200	II	1414.79	÷	2,000	=	0.71
NMHC	0.10	x	200	II	19.97	÷	2,000	=	0.010
*NOx + NMHC	7.99	x	200	=	1597.88	÷	2,000	=	0.799
**SO _x	0.01	x	200	=	1.83	÷	2,000	=	0.001
***PM	0.25	x	200	=	49.93	÷	2,000	=	0.025

## **Emission Estimates**

## 3047 - Source Registration – West Side Steam Boilers

Emission Unit IDs

14166, 14167

# Summary of Criteria Emissions for Kirtland AFB Steam Boiler, West Side

			Potential Emissions (ton/yr)								
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10µm	Particulate Matter <2.5µm			
1	Boiler, Bldg 278, ID 14166	1.89	2.25	0.12	0.014	0.17	0.17	0.17			
2	Boiler, Bldg 278, ID 14167	1.89	2.25	0.12	0.014	0.17	0.17	0.17			
	Total	3.79	4.51	0.25	0.03	0.34	0.34	0.34			

				Annual	Emissions	(ton/yr)		
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10μm	Particulate Matter <2.5µm
1	Boiler, Bldg 278, ID 14166	1.26	1.50	0.08	0.009	0.11	0.11	0.11
2	Boiler, Bldg 278, ID 14167	1.26	1.50	0.08	0.009	0.11	0.11	0.11
	Total	2.52	3.00	0.17	0.02	0.23	0.23	0.23

### AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Natural Gas Boiler at Building 278 (Unit ID 14166) Process Equipment Unit No. 1

#### Boiler

5,250,000 Btu/Hour

1,020 Btu/scf Heating Value of Natural Gas¹

5,832 Annual Hours of Operation (1 Oct - 31 May)

Criteria Air Pollutants	AP-42 Emission Factors ² (Ib/10 ⁶ scf)	Emission Factors (Ib/MMBtu) ³	Hourly Emissions ⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	84	0.082	0.43	1.26	1.89
Nitrogen Oxides	100	0.098	0.51	1.50	2.25
Particulate Matter	7.6	0.0075	0.039	0.11	0.17
Particulate Matter <10µm ⁷	7.6	0.0075	0.039	0.11	0.17
Particulate Matter <2.5µm ⁸	7.6	0.0075	0.039	0.11	0.17
Sulfur Oxides	0.6	0.00059	0.0031	0.0090	0.014
Volatile Organic Compounds	5.5	0.0054	0.028	0.083	0.12

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-1, 1.4-2 (July 1998).

³ The following equation was used to convert the AP-42 emission factors from lb/10⁶ scf to lb/MMBtu. EF (lb/MMBtu) = EF (lb/10⁶ scf) / Heating value of natural gas (BTU/scf) where: EF = Emission Factor

⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor

⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 5,832

⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8,760 hours per year). The following equation was used to estimate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)

 7,8  Assume Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

### AP-42 Emission Factors Hazardous Air Pollutant (HAP) Emission Estimation Spreadsheet Natural Gas Boiler at Building 278 (Unit ID 14166) Process Equipment Unit No. 1

#### Boiler

#### 5,250,000 Btu/Hour

1,020 Btu/scf Heating Value of Natural Gas¹

5,832 Annual Hours of Operation (1 Oct - 31 May)

Hazardous Air Pollutants	CAS No.	AP-42 Emission Factors ² (Ib/10 ⁶ scf)	Emission Factors ³ (Ib/MMBtu)	Hourly Emissions ⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
2-Methylnaphthalene ⁷	91-57-6	2.4E-05	2.4E-08	1.2E-07	3.6E-07	5.4E-07
3-Methylchloranthrene ^{7,9}	56-49-5	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
7,12-Dimethylbenz(a)anthracene ^{7,9}	57-97-6	1.6E-05	1.6E-08	8.2E-08	2.4E-07	3.6E-07
Acenaphthene ^{7,9}	83-32-9	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Acenaphthylene ^{7,9}	208-96-8	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Anthracene ^{7,9}	120-12-7	2.4E-06	2.4E-09	1.2E-08	3.6E-08	5.4E-08
Arsenic ⁸	7440-38-2	2.0E-04	2.0E-07	1.0E-06	3.0E-06	4.5E-06
Benz(a)anthracene ^{7,9}	56-55-3	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Benzene	71-43-2	2.1E-03	2.1E-06	1.1E-05	3.2E-05	4.7E-05
Benzo(a)pyrene ^{7, 9}	50-32-8	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Benzo(b)fluoranthene ^{7, 9}	205-99-2	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Benzo(g,h,i)perylene ^{7,9}	191-24-2	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Benzo(k)fluoranthene ^{7, 9}	207-08-9	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Beryllium ^{8, 9}	7440-41-7	1.2E-05	1.2E-08	6.2E-08	1.8E-07	2.7E-07
Cadmium ⁸	7440-43-9	1.1E-03	1.1E-06	5.7E-06	1.7E-05	2.5E-05
Chromium ⁸	7440-47-3	1.4E-03	1.4E-06	7.2E-06	2.1E-05	3.2E-05
Chrysene ^{7, 9}	218-01-9	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Cobalt ⁸	7440-48-4	8.4E-05	8.2E-08	4.3E-07	1.3E-06	1.9E-06
Dibenzo(a,h)anthracene ^{7,9}	53-70-3	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Dichlorobenzene	25321-22-6	1.2E-03	1.2E-06	6.2E-06	1.8E-05	2.7E-05
Fluoranthene ⁷	206-44-0	3.0E-06	2.9E-09	1.5E-08	4.5E-08	6.8E-08
Fluorene ⁷	86-73-7	2.8E-06	2.7E-09	1.4E-08	4.2E-08	6.3E-08
Formaldehyde	50-00-0	7.5E-02	7.4E-05	3.9E-04	1.1E-03	1.7E-03
Hexane	110-54-3	1.8E+00	1.8E-03	9.3E-03	2.7E-02	4.1E-02
Indeno(1,2,3-cd)pyrene ^{7,9}	193-39-5	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Lead	7439-92-1	5.0E-04	4.9E-07	2.6E-06	7.5E-06	1.1E-05
Manganese ⁸	7439-96-5	3.8E-04	3.7E-07	2.0E-06	5.7E-06	8.6E-06
Mercury ⁸	7439-97-6	2.6E-04	2.5E-07	1.3E-06	3.9E-06	5.9E-06
Naphthalene	91-20-3	6.1E-04	6.0E-07	3.1E-06	9.2E-06	1.4E-05
Nickel ⁸	7440-02-0	2.1E-03	2.1E-06	1.1E-05	3.2E-05	4.7E-05
Phenanathrene ⁷	85-01-8	1.7E-05	1.7E-08	8.8E-08	2.6E-07	3.8E-07
Pyrene ⁷	129-00-0	5.0E-06	4.9E-09	2.6E-08	7.5E-08	1.1E-07
Selenium ^{8, 9}	7782-49-2	2.4E-05	2.4E-08	1.2E-07	3.6E-07	5.4E-07
Toluene	108-88-3	3.4E-03	3.3E-06	1.8E-05	5.1E-05	7.7E-05
Total POM ¹⁰		8.8E-05	8.6E-08	4.5E-07	1.3E-06	2.0E-06
Total HAP				9.7E-03	2.8E-02	4.3E-02

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-2, 1.4-3, and 1.4-4 (July 1998).

 3  The following equation was used to convert the AP-42 emission factors from lb/10 6  scf to lb/MMBtu.

EF (lb/MMBtu) = EF (lb/10⁶ scf) / Heating value of natural gas (BTU/scf)

where: EF = Emission Factor

- ⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor
- ⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 5,832
- ⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8760 hours per year). The following equation was used to estimate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)

⁷ Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-3 (July 1998).

⁸ Metals from natural gas combustion from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-4 (July 1998).

⁹ All emission factors where the value was less than, i.e., <1, a conservative approach was used and the value shown was used, i.e., 1.

¹⁰ Total POM is not in the sum because individual constituents are already accounted for.

### AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Natural Gas Boiler at Building 278 (Unit ID 14167) Process Equipment Unit No. 2

#### Boiler

5,250,000 Btu/Hour

1,020 Btu/scf Heating Value of Natural Gas¹

5,832 Annual Hours of Operation (1 Oct - 31 May)

Criteria Air Pollutants	AP-42 Emission Factors ² (Ib/10 ⁶ scf)	Emission Factors (Ib/MMBtu) ³	Hourly Emissions ⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	84	0.082	0.43	1.26	1.89
Nitrogen Oxides	100	0.098	0.51	1.50	2.25
Particulate Matter	7.6	0.0075	0.039	0.11	0.17
Particulate Matter <10µm ⁷	7.6	0.0075	0.039	0.11	0.17
Particulate Matter <2.5µm ⁸	7.6	0.0075	0.039	0.11	0.17
Sulfur Oxides	0.6	0.00059	0.0031	0.0090	0.014
Volatile Organic Compounds	5.5	0.0054	0.028	0.083	0.12

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-1, 1.4-2 (July 1998).

³ The following equation was used to convert the AP-42 emission factors from lb/10⁶ scf to lb/MMBtu. EF (lb/MMBtu) = EF (lb/10⁶ scf) / Heating value of natural gas (BTU/scf) where: EF = Emission Factor

⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor

⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 5,832

⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8,760 hours per year). The following equation was used to estimate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)

 7,8  Assume Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

### AP-42 Emission Factors Hazardous Air Pollutant (HAP) Emission Estimation Spreadsheet Natural Gas Boiler at Building 278 (Unit ID 14167) Process Equipment Unit No. 2

#### Boiler

#### 5,250,000 Btu/Hour

1,020 Btu/scf Heating Value of Natural Gas¹

5,832 Annual Hours of Operation (1 Oct - 31 May)

Hazardous Air Pollutants	CAS No.	AP-42 Emission Factors ² (Ib/10 ⁶ scf)	Emission Factors ³ (Ib/MMBtu)	Hourly Emissions ⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
2-Methylnaphthalene ⁷	91-57-6	2.4E-05	2.4E-08	1.2E-07	3.6E-07	5.4E-07
3-Methylchloranthrene ^{7,9}	56-49-5	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
7,12-Dimethylbenz(a)anthracene ^{7,9}	57-97-6	1.6E-05	1.6E-08	8.2E-08	2.4E-07	3.6E-07
Acenaphthene ^{7,9}	83-32-9	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Acenaphthylene ^{7,9}	208-96-8	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Anthracene ^{7,9}	120-12-7	2.4E-06	2.4E-09	1.2E-08	3.6E-08	5.4E-08
Arsenic ⁸	7440-38-2	2.0E-04	2.0E-07	1.0E-06	3.0E-06	4.5E-06
Benz(a)anthracene ^{7,9}	56-55-3	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Benzene	71-43-2	2.1E-03	2.1E-06	1.1E-05	3.2E-05	4.7E-05
Benzo(a)pyrene ^{7, 9}	50-32-8	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Benzo(b)fluoranthene ^{7, 9}	205-99-2	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Benzo(g,h,i)perylene ^{7, 9}	191-24-2	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Benzo(k)fluoranthene ^{7, 9}	207-08-9	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Beryllium ^{8, 9}	7440-41-7	1.2E-05	1.2E-08	6.2E-08	1.8E-07	2.7E-07
Cadmium ⁸	7440-43-9	1.1E-03	1.1E-06	5.7E-06	1.7E-05	2.5E-05
Chromium ⁸	7440-47-3	1.4E-03	1.4E-06	7.2E-06	2.1E-05	3.2E-05
Chrysene ^{7,9}	218-01-9	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Cobalt ⁸	7440-48-4	8.4E-05	8.2E-08	4.3E-07	1.3E-06	1.9E-06
Dibenzo(a,h)anthracene ^{7, 9}	53-70-3	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Dichlorobenzene	25321-22-6	1.2E-03	1.2E-06	6.2E-06	1.8E-05	2.7E-05
Fluoranthene ⁷	206-44-0	3.0E-06	2.9E-09	1.5E-08	4.5E-08	6.8E-08
Fluorene ⁷	86-73-7	2.8E-06	2.7E-09	1.4E-08	4.2E-08	6.3E-08
Formaldehyde	50-00-0	7.5E-02	7.4E-05	3.9E-04	1.1E-03	1.7E-03
Hexane	110-54-3	1.8E+00	1.8E-03	9.3E-03	2.7E-02	4.1E-02
Indeno(1,2,3-cd)pyrene ^{7,9}	193-39-5	1.8E-06	1.8E-09	9.3E-09	2.7E-08	4.1E-08
Lead	7439-92-1	5.0E-04	4.9E-07	2.6E-06	7.5E-06	1.1E-05
Manganese ⁸	7439-96-5	3.8E-04	3.7E-07	2.0E-06	5.7E-06	8.6E-06
Mercury ⁸	7439-97-6	2.6E-04	2.5E-07	1.3E-06	3.9E-06	5.9E-06
Naphthalene	91-20-3	6.1E-04	6.0E-07	3.1E-06	9.2E-06	1.4E-05
Nickel ⁸	7440-02-0	2.1E-03	2.1E-06	1.1E-05	3.2E-05	4.7E-05
Phenanathrene ⁷	85-01-8	1.7E-05	1.7E-08	8.8E-08	2.6E-07	3.8E-07
Pyrene ⁷	129-00-0	5.0E-06	4.9E-09	2.6E-08	7.5E-08	1.1E-07
Selenium ^{8, 9}	7782-49-2	2.4E-05	2.4E-08	1.2E-07	3.6E-07	5.4E-07
Toluene	108-88-3	3.4E-03	3.3E-06	1.8E-05	5.1E-05	7.7E-05
Total POM ¹⁰	•	8.8E-05	8.6E-08	4.5E-07	1.3E-06	2.0E-06
Total HAP		-	-	9.7E-03	2.8E-02	4.3E-02

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-2, 1.4-3, and 1.4-4 (July 1998).

³ The following equation was used to convert the AP-42 emission factors from lb/10⁶ scf to lb/MMBtu.

EF (Ib/MMBtu) = EF (Ib/10⁶ scf) / Heating value of natural gas (BTU/scf)

where: EF = Emission Factor

- ⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor
- ⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 5,832
- ⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8760 hours per year). The following equation was used to estimate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)
- ⁷ Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-3 (July 1998).
- ⁸ Metals from natural gas combustion from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-4 (July 1998).
- ⁹ All emission factors where the value was less than, i.e., <1, a conservative approach was used and the value shown was used, i.e., 1.

¹⁰ Total POM is not in the sum because individual constituents are already accounted for.

## **Emission Estimates**

## Permit 3048-2TR – Construction and Demolition Debris Landfill

Emission Unit IDs

18001, 18002

#### Engine Combustion Emissions Emission Estimation Spreadsheet Mulcher Engine at the Construction and Demolition Debris Landfill (Unit ID 18001)

#### Mulcher Engine 425 hp

Criteria Air Pollutants	AP-42 Emission Factors (EF) ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Controlled Annual Emissions ⁵ (ton/yr)	Uncontrolled Potential Annual Emissions ⁶
Carbon Monoxide	0.95	21.72	137000	2.83	0.71	12.38
Nitrogen Oxides	4.41	21.72	137000	13.12	3.28	57.46
Particulate Matter ⁷	0.31	21.72	137000	0.92	0.23	4.04
Particulate Matter <10µm	0.31	21.72	137000	0.92	0.23	4.04
Particulate Matter <2.5µm ⁸	0.31	21.72	137000	0.92	0.23	4.04
Sulfur Oxides	0.29	21.72	137000	0.86	0.22	3.78
Volatile Organic Compounds9	0.35	21.72	137000	1.04	0.26	4.56

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² Hourly fuel usage was calculated using the following equation:

Hourly fuel use = hp * Brake specific fuel consumption (7000 Btu/hp-hr) * 1/HV (Btu/gal)

³ The heating value (HV) of diesel fuel is listed as 137,000 Btu/gal in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels.

⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * fuel use (gal/hr) * HV (Btu/gal) / 1,000,000

⁵ The following equation was used to estimate controlled annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 500 (hr/yr) / 2000 (lb/ton)

⁶ The following equation was used to estimate uncontrolled potential annual emissions for each pollutant: Potential annual emissions (ton/yr) = Hourly emissions (lb/hr) * 8760 (hr/yr) / 2000 (lb/ton)

⁷ No emission factor data for total Particulate Matter (PM) is included in AP-42, assume that all PM emission factors are equal to factor for PM<10µm.

 8  Emissions of PM<2.5 $\mu m$  equal emissions of PM<10 $\mu m.$ 

⁹ Volatile Organic Compounds assumed to be the exhaust portion of Total Organic Compounds (TOC).

#### Mulching Emissions Emission Estimation Spreadsheet Mulcher at the Construction and Demolition Debris Landfill (Unit ID 18002)

Criteria Air Pollutants ¹	AP-42 Emission Factor (EF) ² (Ib/ton material)	Density ³ (lb/yd ³ )	Maximum Mulching Rate ⁴ (yd ³ /hr)	Hourly Emissions ⁵ (Ib/hr)	Controlled Annual Emissions ⁶ (ton/yr)	Uncontrolled Potential Annual Emissions ⁷ (ton/yr)
Particulate Matter	0.35	625	10.8	1.18	0.30	5.17
Particulate Matter <10µm ⁸	0.35	625	10.8	1.18	0.30	5.17
Particulate Matter <2.5µm ⁸	0.35	625	10.8	1.18	0.30	5.17

¹ Particulate emissions are the only emissions resulting from mulching organic material.

² Particulate matter emission factor (EF) from EPA *AP-42 Section 10.0 Wood Products Industry (February 1980), Table 10.3-1 Uncontrolled Fugitive Particulate Emission Factors for Plywood Veneer and Layout Operations; Log Sawing (AP-42, Fourth Edition)*. Particulate emissions equal PM<10μm.

³ Density assumed to equal that for chipped wood as listed in the EPA document *Measuring Recycling: A Guide for State and Local Governments, Appendix B: Standard Volume-to-Weight Conversion Factors, EPA530-R-97-011 (1997).* 

⁴ Manufacturer specifications state that the hopper size is 10.8 cubic yards. Conservatively assumed maximum material-mulching rate equals one hopper per hour.

⁵ The following equation was used to estimate hourly emissions:

Hourly emissions (lb/hr) = Mulching rate (yd³/hr) * Density of mulched materials (lb/yd³) * EF (lb/ton material) / 2000 (lb/ton)

⁶ The following equation was used to estimate controlled annual emissions: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 500 (hr/yr) / 2000 (lb/ton)

⁷ The following equation was used to estimate uncontrolled potential annual emissions: Potential annual emissions (ton/yr) = Hourly emissions (lb/hr) * 8760 (hr/yr) / 2000 (lb/ton)

⁸ Emissions of PM<2.5 $\mu$ m and PM<10 $\mu$ m equal emissions of total PM.

## **Emission Estimates**

Permit 3070-M1 – Basewide Miscellaneous Paint and Chemical Usage

Emission Unit ID

31999

		Maximum Hourly			
Basewide	Organization	Usage Rate	VOC	PM	Total HAP
Unit ID	Specific ID	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
	31060	7.1	6.9	0	0.008
	31062	8.0	4.3	0.3	2.149
	31063	139.3	60.0	0.7	1.389
	31064	91.5	75.7	0.2	0.812
	31066	3.8	2.0	0.3	0.101
31999	31069	0.5	0.2	0.02	0.017
	31073	2.1	1.6	0.2	0.082
	31074	0.01	0.006	0	0
	31075	1.7	1.1	0.3	0.128
	31079	7.1	6.1	0.1	1.147
	31080	0.3	0.2	0.04	0.093
	<b>Basewide Total</b>	s (lb/hr)	158.00	2.08	5.93

## Table C-4. Maximum Hourly Emission Estimations (lb/hr) by Organization Specific ID

		Potential			
		Uncontrolled			
Basewide	Organization	Annual Usage Rate	VOC	PM	Total HAP
Unit ID	Specific ID	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
	31060	14847.0	14368.1	0	16.66
	31062	16705.1	8852.9	538.3	4469.63
	31063	289693.2	124754.2	1429.3	2889.14
	31064	190226.3	157381.7	361.4	1688.08
	31066	7848.0	4081.5	621.7	210.93
31999	31069	966.2	442.4	37.8	35.19
	31073	4366.0	3428.8	430.1	170.29
	31074	25.5	12.8	0	0
	31075	3603.2	2257.5	571.4	267.02
	31079	14794.8	12649.8	259.9	2385.47
	31080	547.1	411.4	76.8	193.84
	Basewide Total	s (lb/yr)	328641.15	4326.77	12326.26
	Basewide Tota	ls (tpy)	164.32	2.16	6.16

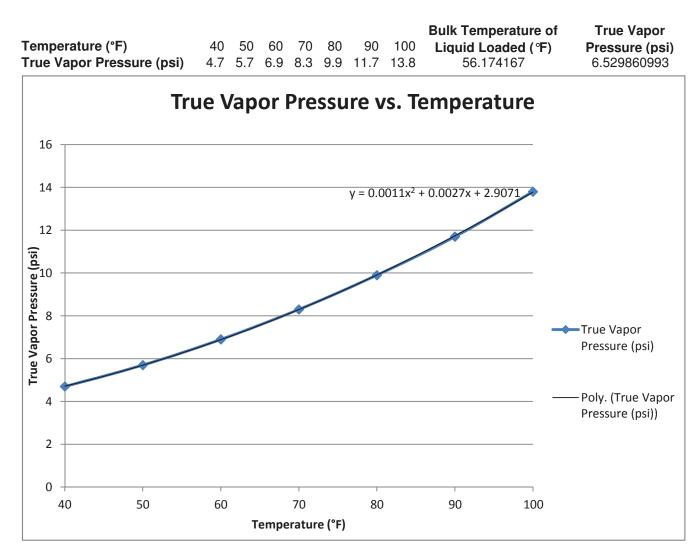
Table C-5. Potential Uncontrolled Annual Emission Estimations (lb/yr) by Organization Specific ID
---------------------------------------------------------------------------------------------------

		Anticipated Annual			
Basewide	Organization	Usage Rate	VOC	PM	Total HAP
Unit ID	Specific ID	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
	31060	7050.6	6823.2	0	7.91
	31062	7933.0	4204.1	255.6	2122.56
	31063	137571.2	59244.0	678.8	1372.01
	31064	90335.8	74738.4	171.6	801.65
	31066	3726.9	1938.3	295.2	100.17
31999	31069	458.8	210.1	17.9	16.71
	31073	2073.4	1628.3	204.3	80.87
	31074	12.1	6.1	0	0
	31075	1711.1	1072.1	271.3	126.80
	31079	7025.9	6007.2	123.4	1132.83
	31080	259.8	195.4	36.5	92.05
	<b>Basewide Total</b>	s (lb/yr)	156067.03	2054.72	5853.56
	Basewide Tota	ls (tpy)	78.03	1.03	2.93

## Table C-6. Proposed Annual Emission Estimations (lb/yr) by Organization Specific ID

## **Emission Estimates**

## Permit 3090-RV1 – Government Fuels Distribution Operations


Emission Unit IDs

15001, 15004, 15011, 16001, 22003, 22004, 22005, 22015, 25012

## Summary of VOC Emissions for Kirtland AFB Government Fuels Distribution

Process			VOC Emissions (to	on/yr)
Equipment Unit No.	Emission Source	Hourly Emissions (Ibs/hr)	Annual Emissions (ton/yr)	Potential Emissions (ton/yr)
	Gasoline Storage, Bulk Fuels Facility, Bldg 1041, Unit ID 22005	30.70	2.31	134.47
1	Gasoline Loading, Bulk Fuels Facility, Bldg 1041, Unit ID 16001	105.55	0.26	462.29
	Total	136.25	2.57	596.76
	Gasoline Storage, Govt East Service Station, Bldg 20359, Unit ID 22003	2.76	3.78	12.09
2	Gasoline Storage, Govt East Service Station, Bldg 20359, Unit ID 22004	2.76	2.90	12.09
	Gasoline Dispensing, Govt East Service Station, Bldg 20359, Unit ID 15001	28.08	4.04	122.99
	Total	33.60	10.72	147.18
	E85 Storage , Govt East Service Station, Building 20359, Unit ID 22015	3.75	5.70	16.41
3	E85 Dispensing , Govt East Service Station, Building 20359, Unit ID 15011	14.04	2.98	61.50
	Total	17.79	8.69	77.91
	Fuel Storage, Govt West Service Station, Bldg 471, Unit ID 25012	9.96	0.58	43.62
4	Fuel Dispensing, Govt West Service Station, Bldg 471, Unit ID 15004	14.04	0.82	61.50
	Total	24.00	1.40	105.12
	Grand Total	211.63	23.38	926.97

## AP-42 Section 7.1: Organic Liquid Storage Tanks, Table 7.1-2 (November 2006) Gasoline RVP 13,True Vapor Pressure Extrapolation Gasoline Loading at Building 1041 (Unit ID 16001) Process Equipment Unit No. 1



## **AP-42 Emission Methodology** VOC Emission Estimation Spreadsheet Gasoline Loading at Building 1041 (Unit ID 16001) **Bulk Fuels Facility** Process Equipment Unit No. 1

#### VOC Emissions from Gasoline Loading

300 Loading Rate (gal/min)

- 62 Vapor Molecular Weight of Gasoline RVP 13¹ (lb/lb-mole)
- 516.17 Bulk Liquid Temperature² (°R)
  - 6.53 True Vapor Pressure³ (psia)
  - 0.6 Saturation Factor⁴
  - 0 Capture Efficiency⁵ (%)
  - 0 Control Efficiency⁵ (%)

#### 90,000 Annual Throughput⁶ (gal/yr)

Loading Loss ⁷	Hourly Emissions ⁸	Annual Emissions ⁹	Potential to Emit ¹⁰
(lb/1000-gal)	(lb/hr)	(ton/yr)	(ton/yr)
5.9	105.55	0.26	462.29

¹ Vapor molecular weight from AP-42 Section 7.1: Organic Liquid Storage Tanks, Table 7.1-2 (November 2006).

² Temperature in °F was obtained based on atmospheric calculations in EPA Tanks, version 4.09d (see Attachment G1).

The following equation, from AP-42 Section 5.2: Transportation and Marketing of Petroleum Liquids (June 2008), was used to calculate bulk liquid temperature:  $T(^{\circ}R) = ^{\circ}F + 460$ 

(June 2008).

³ True Vapor Pressure was obtained based on extrapolation of data in AP-42 AP-42 Section 7.1: Organic Liquid Storage Tanks, Table 7.1-2 (November 2006). See Gasoline RVP 13, True Vapor Pressure Extrapolation Sheet

⁴ Saturation Factor (S Factor) from AP-42 Section 5.2: Transportation and Marketing of Petroleum Liquids, Table 5.2-1

⁵ No vapor recovery control system is used during loading.

⁶ Annual requested throughput

⁷ Loading loss calculation methodology from AP-42 Section 5.2: Transportation and Marketing of Petroleum Liquids (June 2008).

The following equation was used to calculate loading losses:

```
Loading Loss (lbs/1000-gal) = 12.46 * [(SPM) / T] * [1 - (Cap<sub>eff</sub>/100 * Con<sub>eff</sub>/100)]
```

```
where: S = a saturation factor obtained from Table 5.2-1
```

P = true vapor pressure of liquid loaded (psia)

- M = vapor molecular weight (lb/lb-mole)
- T = Bulk Liquid Temperature (°R)
- Cap_{eff} = Capture Efficiency (%)

Con_{eff} = Control Efficiency (%)

- ⁸ The following equation was used to calculate hourly emissions: Hourly Emissions (lb/hr) = Loading Loss (lb/1000-gal) * Loading Rate (gal/min) * 60 (min/hr) / 1000
- ⁹ The following equation was used to calculate annual emissions: Annual emissions (ton/yr) = Annual Throughput (1000-gal/yr) * Loading Loss (lb/1000-gal) / 2000 (lb/ton)

¹⁰ Potential to emit (PTE) was calculated based on the number of hours in a year (8760 hours per year) The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hr/yr) / 2000 (lb/ton)

## TANKS 4.09d Emission Methodology VOC Emission Estimation Spreadsheet Gasoline Storage at Building 1041 (Unit ID 22005) Bulk Fuels Facility Process Equipment Unit No. 1

## VOC Emissions from Gasoline Storage 300 Unloading Rate (gal/min) 157,680,000 Potential Annual Throughput¹ (gal/yr) 90,000 Annual Throughput² (gal/yr)

Emission Type ³	Annual Emissions ⁴ (ton/yr)	Potential to Emit ⁵ (ton/yr)	Hourly Emissions ⁶ (Ibs/hr)
Working Losses	0.45	132.61	30.28
Breathing Losses	1.86	1.86	0.42
Total Losses	2.31	134.47	30.70

¹ Potential annual throughput was calculated based on the number of hours in a year (8760 hours per year) The following equation was used to calculate potential annual throughput: Potential Annual Throughput (gal/yr) = Unloading Rate (gal/min) * 60 (min/hr) * 8760 (hrs/yr)

² Annual requested throughput

³ Working Losses, Breathing Losses, and Total Losses were calculated using EPA Tanks, version 4.09d (see Attachments G1 and G2).

- ⁴ Calculated in TANKS 4.09d using the annual throughput.
- ⁵ Calculated in TANKS 4.09d using the potential annual throughput.

⁶ Hourly emissions are back-calculated from PTE using the following equation: Hourly Emissions (lbs/hr) = PTE (ton/yr) * 2000 (lb/ton) / 8760 (hrs/yr)

## AP-42 Emission Methodology VOC Emission Estimation Spreadsheet Gasoline Dispensing at Building 20359 (Unit ID 15001) Government East Service Station Process Equipment Unit No. 2

## VOC Emissions from Gasoline Dispensing

40 Nozzle Dispensing Rate¹ (gal/min) 690.000 Annual Throughput² (gal/yr)

Loss Category	VOC Emission Factor ³ (lb/1000-gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions⁵ (ton/yr)	Potential to Emit VOC ⁶ (ton/yr)
Displacement Losses from Vehicle Fueling ⁷	11	26.40	3.80	115.63
Spillage during Vehicle Fueling	0.7	1.68	0.24	7.36
Total Loss from Vehicle Fueling	11.70	28.08	4.04	122.99

¹ Nozzle dispensing rate based on four standard gas station pump nozzles, two nozzles per AST, that can all be operated simultaneously at a rate of 10 gal/min.

² Annual requested throughput

³ Emission factors (EF) are from AP-42 Section 5.2: Transportation and Marketing of Petroleum Liquids, Table 5.2-7 (June 2008).

⁴ The following equation was used to calculate hourly emissions: Hourly Emissions (lb/hr) = VOC Emission Factor (lb/1000-gal) * Nozzle Dispensing Rate (gal/min) * 60 (min/hr) / 1000

⁵ The following equation was used to calculate annual emissions: Annual emissions (ton/yr) = Annual Throughput (1000-gal/yr) * VOC Emission Factor (lb/1000-gal) / 2000 (lb/ton)

⁶ Potential to emit (PTE) was calculated based on the number of hours in a year (8760 hours per year) The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hr/yr) / 2000 (lb/ton)

⁷ EF for Displacement Losses is for uncontrolled losses.

## TANKS 4.09d Emission Methodology VOC Emission Estimation Spreadsheet Gasoline Storage at Building 20359 (Unit IDs 22003 and 22004) Government East Service Station Process Equipment Unit No. 2

### VOC Emissions from Gasoline Storage

20 Unloading Rate (gal/min)

10,512,000 Potential Annual Throughput¹ (gal/yr)

510,000 Annual Throughput of Unit ID 22003² (gal/yr) 210,000 Annual Throughput of Unit ID 22004² (gal/yr)

Emission Type ³	Annual Emissions ⁴ (ton/yr)	Potential to Emit VOC ⁵ (ton/yr)	Hourly Emissions ⁶ (Ibs/hr)		
Working Losses 22003	1.92	10.24	2.34		
Working Losses 22004	1.05	10.24	2.34		
Breathing Losses 22003	1.86	1.86	0.42		
Breathing Losses 22004	1.86	1.86	0.42		
Total Losses	6.68	24.19	5.52		

¹ Potential annual throughput was calculated based on the number of hours in a year (8760 hours per year) The following equation was used to calculate potential annual throughput: Potential Annual Throughput (gal/yr) = Unloading Rate (gal/min) * 60 (min/hr) * 8760 (hrs/yr)

² Annual requested throughput

³ Working Losses, Breathing Losses, and Total Losses were calculated using EPA Tanks, version 4.09d (see Attachments G3 - G6).

⁴ Calculated in TANKS 4.09d using the annual throughput.

⁵ Calculated in TANKS 4.09d using the potential annual throughput.

⁶ Hourly emissions are back-calculated from PTE using the following equation: Hourly Emissions (lbs/hr) = PTE (ton/yr) * 2000 (lb/ton) / 8760 (hrs/yr)

## AP-42 Emission Methodology VOC Emission Estimation Spreadsheet E85 Dispensing at Building 20359 (Unit ID 15011) Government East Service Station Process Equipment Unit No. 3

## VOC Emissions from E85 Dispensing 20 Nozzle Dispensing Rate¹ (gal/min) 510,000 Annual Throughput² (gal/yr)

VOC Emiss	ion Factors ³			
Displacement Losses from Vehicle Fueling ⁴ (Ib/1000-gal)	Spillage during Vehicle Fueling (Ib/1000-gal)	Hourly Emissions ⁵ (lb/hr)	Annual Emissions ⁶ (ton/yr)	Potential to Emit ⁷ (ton/yr)
11.0	0.7	14.04	2.98	61.50

¹ Nozzle dispensing rate based on two standard service station pump nozzles that can be operated simultaneously at a rate of 10 gal/min.

² Annual requested throughput

³ Emission factors (EF) are from AP-42 Section 5.2: Transportation and Marketing of Petroleum Liquids, Table 5.2-7 (June 2008).

⁴ EF for Displacement Losses is for uncontrolled losses.

⁵ The following equation was used to calculate hourly emissions: Hourly Emissions (lb/hr) = Total Loss (lb/1000-gal) * [Nozzle Dispensing Rate (gal/min) * 60 (min/hr) / 1000] where Total Loss (lb/1000-gal) = Displacement Loss (lbs/1000-gal) + Spillage Loss (lb/1000-gal)

⁶ The following equation was used to calculate annual emissions:

Annual emissions (ton/yr) = Annual Throughput (1000-gal/yr) * Total Loss (lb/1000-gal) / 2000 (lbs/ton) where Total Loss (lb/1000-gal) = Displacement Loss (lbs/1000-gal) + Spillage Loss (lb/1000-gal)

⁷ Potential to emit (PTE) was calculated based on the number of hours in a year (8760 hours per year) The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

## TANKS 4.09d Emission Methodology VOC Emission Estimation Spreadsheet E85 Storage at Building 20359 (Unit ID 22015) Government East Service Station Process Equipment Unit No. 3

### VOC Emissions from E85 Storage 20 Unloading Rate (gal/min) 10,512,000 Potential Annual Throughput¹ (gal/yr) 510,000 Annual Throughput² (gal/yr)

Emission Type ³	Annual Emissions ⁴ (ton/yr)	Potential to Emit ⁵ (ton/yr)	Hourly Emissions ⁶ (Ibs/hr)
Working Losses	2.47	13.18	3.01
Breathing Losses	3.23	3.23	0.74
Total Losses	5.70	16.41	3.75

¹ Potential annual throughput was calculated based on the number of hours in a year (8760 hours per year) The following equation was used to calculate potential annual throughput: Potential Annual Throughput (gal/yr) = Unloading Rate (gal/min) * 60 (min/hr) * 8760 (hrs/yr)

² Annual requested throughput

³ Working Losses, Breathing Losses, and Total Losses were calculated using EPA Tanks, version 4.09d (see Attachments G7 and G8).

- ⁴ Calculated in TANKS 4.09d using the annual throughput.
- ⁵ Calculated in TANKS 4.09d using the potential annual throughput.

⁶ Hourly emissions are back-calculated from PTE using the following equation: Hourly Emissions (lbs/hr) = PTE (ton/yr) * 2000 (lb/ton) / 8760 (hrs/yr)

## AP-42 Emission Methodology VOC Emission Estimation Spreadsheet Gasoline Service Station at Building 471 (Unit IDs 15004 and 25012) Government West Service Station Process Equipment Unit No. 4

#### VOC Emissions from Gasoline Storage and Dispensing 20 Nozzle Dispensing Rate¹ (gal/min) 140,000 Annual Throughput² (gal/yr)

Loss Category	VOC Emission Factor ³ (lb/1000-gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions ⁵ (ton/yr)	Potential to Emit ⁶ (ton/yr)
UST Filling ⁷	7.30	8.76	0.51	38.37
UST Breathing & Emptying	1.00	1.20	0.070	5.26
Displacement Losses from Vehicle Fueling ⁸	11.00	13.20	0.77	57.82
Spillage during Vehicle Fueling	0.70	0.84	0.049	3.68
Total Loss from Vehicle Fueling	20.00	24.00	1.40	105.12

¹ Nozzle dispensing rate based on two standard gas station pump nozzles that can be operated simultaneously at a rate of 10 gal/min.

² Annual requested throughput

- ³ Emission factors (EF) are from AP-42 Section 5.2: Transportation and Marketing of Petroleum Liquids, Table 5.2-7 (June 2008).
- ⁴ The following equation was used to calculate hourly emissions: Hourly Emissions (lb/hr) = VOC Emission Factor (lbs/1000-gal) * Nozzle Dispensing Rate (gal/min) * 60 (min/hr) / 1000
- ⁵ The following equation was used to calculate annual emissions: Annual emissions (ton/yr) = Annual Throughput (1000-gal/yr) * VOC Emission Factor (lb/1000-gal) / 2000 (lbs/ton)
- ⁶ Potential to emit (PTE) was calculated based on the number of hours in a year (8760 hours per year) The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ EF for UST Filling is for unbalanced, submerged filling, although vapor balance is employed during filling.

⁸ EF for Displacement Losses is for uncontrolled losses.

EPA Tanks 4.09d Output Files for Unit ID 22005 Annual Emissions

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	22005 Albuquerque New Mexico KAFB Horizontal Tank Gasoline AST, Bulk Fuels	
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	27.00 8.00 10,000.00 9.00 90,000.00 N N	
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03	

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

#### 22005 - Horizontal Tank Albuquerque, New Mexico

		Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp		Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 13)	All	58.54	51.41	65.66	56.17	6.7593	5.9014	7.7134	62.0000			92.00	Option 4: RVP=13, ASTM Slope=3

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

#### 22005 - Horizontal Tank Albuquerque, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	3,713.4716
Vapor Space Volume (cu ft):	864.4382
Vapor Density (lb/cu ft):	0.0754
Vapor Space Expansion Factor:	0.3800
Vented Vapor Saturation Factor:	0.4110
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	864.4382
Tank Diameter (ft):	8.0000
Effective Diameter (ft):	16.5879
Vapor Space Outage (ft):	4.0000
Tank Shell Length (ft):	27.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0754
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	62.0000
Surface Temperature (psia):	6.7593
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700

TANKS 4.0 Report

Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3800
Daily Vapor Temperature Range (deg. R):	28.5089
Daily Vapor Pressure Range (psia):	1.8120
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	6.7593
Vapor Pressure at Daily Minimum Liquid	0.1000
Surface Temperature (psia):	5.9014
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	7.7134
Daily Avg. Liquid Surface Temp. (deg R):	518,2062
Daily Min. Liquid Surface Temp. (deg R):	511.0790
Daily Max. Liquid Surface Temp. (deg R):	525.3334
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.4110
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	6.7593
Vapor Space Outage (ft):	4.0000
Working Losses (lb):	898.0191
Vapor Molecular Weight (lb/lb-mole):	62.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	6.7593
Annual Net Throughput (gal/yr.):	90,000.0000
Annual Turnovers:	9.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	4,611.4907

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

## **Emissions Report for: Annual**

#### 22005 - Horizontal Tank Albuquerque, New Mexico

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Gasoline (RVP 13)	898.02	3,713.47	4,611.49				

EPA Tanks 4.09d Output Files for Unit ID 22005 Potential Emissions

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	22005 Albuquerque New Mexico KAFB Horizontal Tank Gasoline AST, Bulk Fuels	
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	27.00 8.00 10,000.00 15,768.00 157,680,000.00 N N	
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03	

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

#### 22005 - Horizontal Tank Albuquerque, New Mexico

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 13)	All	58.54	51.41	65.66	56.17	6.7593	5.9014	7.7134	62.0000			92.00	Option 4: RVP=13, ASTM Slope=3

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Annual Emission Calcaulations	
Standing Losses (lb):	3,713.4716
Vapor Space Volume (cu ft):	864.4382
Vapor Density (lb/cu ft):	0.0754
Vapor Space Expansion Factor:	0.3800
Vented Vapor Saturation Factor:	0.4110
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	864.4382
Tank Diameter (ft):	8.0000
Effective Diameter (ft):	16.5879
Vapor Space Outage (ft):	4.0000
Tank Shell Length (ft):	27.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0754
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	62.0000
Surface Temperature (psia):	6.7593
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700

TANKS 4.0 Report

Daily Total Solar Insulation		
Factor (Btu/sqft day):	1,765.3167	
Vanas Space Europaian Factor		
Vapor Space Expansion Factor Vapor Space Expansion Factor:	0.3800	
Daily Vapor Temperature Range (deg. R):	28.5089	
Daily Vapor Pressure Range (psia):	1.8120	
Breather Vent Press. Setting Range(psia):	0.0600	
Vapor Pressure at Daily Average Liquid	0.0000	
Surface Temperature (psia):	6,7593	
Vapor Pressure at Daily Minimum Liquid	0.7595	
Surface Temperature (psia):	5.9014	
Vapor Pressure at Daily Maximum Liquid	5.9014	
Surface Temperature (psia):	7.7134	
Daily Avg. Liquid Surface Temp. (deg R):	518.2062	
Daily My. Liquid Surface Temp. (deg R):	511.0790	
Daily Min. Liquid Surface Temp. (deg R):	525.3334	
Daily Ambient Temp. Range (deg. R):	27.9250	
Daily Ambient Temp. Range (deg. R).	27.9250	
Vented Vapor Saturation Factor		
Vented Vapor Saturation Factor:	0.4110	
Vapor Pressure at Daily Average Liquid:	0.1110	
Surface Temperature (psia):	6,7593	
Vapor Space Outage (ft):	4.0000	
· · · · · · · · · · · · · · · · · · ·		
Working Losses (Ib):	265,214.9786	
Vapor Molecular Weight (lb/lb-mole):	62.0000	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (psia):	6.7593	
Annual Net Throughput (gal/yr.):	157,680,000.0000	
Annual Turnovers:	15,768.0000	
Turnover Factor:	0.1686	
Tank Diameter (ft):	8.0000	
Working Loss Product Factor:	1.0000	
Total Losses (lb):	268,928.4502	

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

## **Emissions Report for: Annual**

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 13)	265,214.98	3,713.47	268,928.45						

EPA Tanks 4.09d Output Files for Unit ID 22003 Annual Emissions

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	22003 Albuquerque New Mexico Kirtland AFB Horizontal Tank Gasoline fuel AST, Gov't East Service Station
Tank DimensionsShell Length (ft):Diameter (ft):Volume (gallons):Turnovers:Net Throughput(gal/yr):Is Tank Heated (y/n):Is Tank Underground (y/n):	27.00 8.00 10,000.00 51.00 510,000.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

#### 22003 - Horizontal Tank Albuquerque, New Mexico

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 13)	All	58.54	51.41	65.66	56.17	6.7593	5.9014	7.7134	62.0000			92.00	Option 4: RVP=13, ASTM Slope=3

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Annual Emission Calcaulations	
Standing Losses (lb):	3,713.4716
Vapor Space Volume (cu ft):	864.4382
Vapor Density (lb/cu ft):	0.0754
Vapor Space Expansion Factor:	0.3800
Vented Vapor Saturation Factor:	0.4110
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	864.4382
Tank Diameter (ft):	8.0000
Effective Diameter (ft):	16.5879
Vapor Space Outage (ft):	4.0000
Tank Shell Length (ft):	27.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0754
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	62.0000
Surface Temperature (psia):	6.7593
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700

TANKS 4.0 Report

Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3800
Daily Vapor Temperature Range (deg. R):	28.5089
Daily Vapor Pressure Range (psia):	1.8120
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	6,7593
Vapor Pressure at Daily Minimum Liquid	0.7555
Surface Temperature (psia):	5.9014
Vapor Pressure at Daily Maximum Liquid	5.5014
Surface Temperature (psia):	7.7134
Daily Avg. Liquid Surface Temp. (deg R):	518,2062
Daily My. Liquid Surface Temp. (deg R):	511.0790
Daily Max. Liquid Surface Temp. (deg R):	525.3334
Daily Ambient Temp. Range (deg. R):	27.9250
Daily Ambient Temp. Narige (deg. 14).	27.3230
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.4110
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	6.7593
Vapor Space Outage (ft):	4.0000
Working Losses (Ib):	3.841.5262
Vapor Molecular Weight (lb/lb-mole):	62.0000
Vapor Pressure at Daily Average Liquid	02.0000
Surface Temperature (psia):	6,7593
Annual Net Throughput (gal/yr.):	510,000.0000
Annual Turnovers:	51.0000
Turnover Factor:	
Tank Diameter (ft):	0.7549 8.0000
Working Loss Product Factor:	1.0000
WORKING LOSS FIDUULL PACIDI.	1.0000
	7 664 0070
Total Losses (Ib):	7,554.9978

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

## **Emissions Report for: Annual**

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 13)	3,841.53	3,713.47	7,555.00						

EPA Tanks 4.09d Output Files for Unit ID 22003 Potential Emissions

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	22003 Albuquerque New Mexico Kirtland AFB Horizontal Tank Gasoline fuel AST, Gov't East Service Station
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	27.00 8.00 10,000.00 1,051.20 10,512,000.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

#### 22003 - Horizontal Tank Albuquerque, New Mexico

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 13)	All	58.54	51.41	65.66	56.17	6.7593	5.9014	7.7134	62.0000			92.00	Option 4: RVP=13, ASTM Slope=3

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Annual Emission Calcaulations	
Standing Losses (lb):	3,713.4716
Vapor Space Volume (cu ft):	864.4382
Vapor Density (lb/cu ft):	0.0754
Vapor Space Expansion Factor:	0.3800
Vented Vapor Saturation Factor:	0.4110
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	864.4382
Tank Diameter (ft):	8.0000
Effective Diameter (ft):	16.5879
Vapor Space Outage (ft):	4.0000
Tank Shell Length (ft):	27.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0754
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	62.0000
Surface Temperature (psia):	6.7593
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700

TANKS 4.0 Report

Daily Total Solar Insulation		
Factor (Btu/sqft day):	1,765.3167	
Vapor Space Expansion Factor		
Vapor Space Expansion Factor:	0.3800	
Daily Vapor Temperature Range (deg. R):	28.5089	
Daily Vapor Pressure Range (psia):	1.8120	
Breather Vent Press. Setting Range(psia):	0.0600	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (psia):	6.7593	
Vapor Pressure at Daily Minimum Liquid		
Surface Temperature (psia):	5.9014	
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	7.7134	
Daily Avg. Liquid Surface Temp. (deg R):	518,2062	
Daily Avg. Liquid Surface Temp. (deg R). Daily Min. Liquid Surface Temp. (deg R):	518.2082	
Daily Min. Liquid Surface Temp. (deg R):	525.3334	
Daily Ambient Temp. Range (deg. R):	27.9250	
Daily Ambient Temp. Nange (deg. 17).	21.3230	
Vented Vapor Saturation Factor		
Vented Vapor Saturation Factor:	0.4110	
Vapor Pressure at Daily Average Liquid:		
Surface Temperature (psia):	6.7593	
Vapor Space Outage (ft):	4.0000	
Working Losses (lb):	20,474.8358	
Vapor Molecular Weight (lb/lb-mole):	62.0000	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (psia):	6.7593	
Annual Net Throughput (gal/yr.):	10,512,000.0000	
Annual Turnovers:	1,051.2000	
Turnover Factor:	0.1952	
Tank Diameter (ft):	8.0000	
Working Loss Product Factor:	1.0000	
T-4-11	04 400 007 1	
Total Losses (Ib):	24,188.3074	

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

## **Emissions Report for: Annual**

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 13)	20,474.84	3,713.47	24,188.31						

EPA Tanks 4.09d Output Files for Unit ID 22004 Annual Emissions

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	22004 Albuquerque New Mexico Kirtland AFB Horizontal Tank Gasoline fuel AST, Gov't East Service Station
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	27.00 8.00 10,000.00 21.00 210,000.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

#### 22004 - Horizontal Tank Albuquerque, New Mexico

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 13)	All	58.54	51.41	65.66	56.17	6.7593	5.9014	7.7134	62.0000			92.00	Option 4: RVP=13, ASTM Slope=3

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Annual Emission Calcaulations	
Standing Losses (lb):	3,713.4716
Vapor Space Volume (cu ft):	864.4382
Vapor Density (lb/cu ft):	0.0754
Vapor Space Expansion Factor:	0.3800
Vented Vapor Saturation Factor:	0.4110
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	864.4382
Tank Diameter (ft):	8.0000
Effective Diameter (ft):	16.5879
Vapor Space Outage (ft):	4.0000
Tank Shell Length (ft):	27.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0754
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	62.0000
Surface Temperature (psia):	6.7593
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700

TANKS 4.0 Report

Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3800
Daily Vapor Temperature Range (deg. R):	28.5089
Daily Vapor Pressure Range (psia):	1.8120
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	6.7593
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	5,9014
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	7.7134
Daily Avg. Liquid Surface Temp. (deg R):	518.2062
Daily Min. Liquid Surface Temp. (deg R):	511.0790
Daily Max. Liquid Surface Temp. (deg R):	525.3334
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.4110
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	6.7593
Vapor Space Outage (ft):	4.0000
Working Losses (Ib):	2,095.3779
Vapor Molecular Weight (lb/lb-mole):	62.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	6.7593
Annual Net Throughput (gal/yr.):	210,000.0000
Annual Turnovers:	21.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	5,808.8495

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

## **Emissions Report for: Annual**

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 13)	2,095.38	3,713.47	5,808.85						

EPA Tanks 4.09d Output Files for Unit ID 22004 Potential Emissions

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	22004 Albuquerque New Mexico Kirtland AFB Horizontal Tank Gasoline fuel AST, Gov't East Service Station
Tank DimensionsShell Length (ft):Diameter (ft):Volume (gallons):Turnovers:Net Throughput(gal/yr):Is Tank Heated (y/n):Is Tank Underground (y/n):	27.00 8.00 10,000.00 1,051.20 10,512,000.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

#### 22004 - Horizontal Tank Albuquerque, New Mexico

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 13)	All	58.54	51.41	65.66	56.17	6.7593	5.9014	7.7134	62.0000			92.00	Option 4: RVP=13, ASTM Slope=3

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Annual Emission Calcaulations	
Standing Losses (lb):	3,713.4716
Vapor Space Volume (cu ft):	864.4382
Vapor Density (lb/cu ft):	0.0754
Vapor Space Expansion Factor:	0.3800
Vented Vapor Saturation Factor:	0.4110
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	864.4382
Tank Diameter (ft):	8.0000
Effective Diameter (ft):	16.5879
Vapor Space Outage (ft):	4.0000
Tank Shell Length (ft):	27.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0754
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	62.0000
Surface Temperature (psia):	6.7593
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700

TANKS 4.0 Report

Daily Total Solar Insulation		
Factor (Btu/sqft day):	1,765.3167	
Vapor Space Expansion Factor		
Vapor Space Expansion Factor:	0.3800	
Daily Vapor Temperature Range (deg. R):	28.5089	
Daily Vapor Pressure Range (psia):	1.8120	
Breather Vent Press. Setting Range(psia):	0.0600	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (psia):	6.7593	
Vapor Pressure at Daily Minimum Liquid		
Surface Temperature (psia):	5.9014	
Vapor Pressure at Daily Maximum Liquid		
Surface Temperature (psia):	7.7134	
Daily Avg. Liquid Surface Temp. (deg R):	518.2062	
Daily Min. Liquid Surface Temp. (deg R):	511.0790	
Daily Max. Liquid Surface Temp. (deg R):	525.3334	
Daily Ambient Temp. Range (deg. R):	27.9250	
Vented Vapor Saturation Factor		
Vented Vapor Saturation Factor:	0.4110	
Vapor Pressure at Daily Average Liquid:		
Surface Temperature (psia):	6.7593	
Vapor Space Outage (ft):	4.0000	
Working Losses (lb):	20,474.8358	
Vapor Molecular Weight (lb/lb-mole):	62.0000	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (psia):	6.7593	
Annual Net Throughput (gal/yr.):	10,512,000.0000	
Annual Turnovers:	1,051.2000	
Turnover Factor:	0.1952	
Tank Diameter (ft):	8.0000	
Working Loss Product Factor:	1.0000	
Total Losses (Ib):	24,188.3074	

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

## **Emissions Report for: Annual**

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline (RVP 13)	20,474.84	3,713.47	24,188.31					

EPA Tanks 4.09d Output Files for Unit ID 22015 Annual Emissions

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	22015 Albuquerque New Mexico Kirtland AFB Horizontal Tank E85 Tank at Gov't East Service Station
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	28.60 8.00 10,000.00 51.00 510,000.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

#### 22015 - Horizontal Tank Albuquerque, New Mexico

			aily Liquid S perature (de		Liquid Bulk Temp	Bulk			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
E-85 Fuel	All	58.54	51.41	65.66	56.17	7.9326	6.9456	9.0274	68.0000			0.00	

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Annual Emission Calcaulations	
Standing Losses (lb):	6,459.2274
Vapor Space Volume (cu ft):	915.6642
Vapor Density (lb/cu ft):	0.0970
Vapor Space Expansion Factor:	0.5343
Vented Vapor Saturation Factor:	0.3729
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	915.6642
Tank Diameter (ft):	8.0000
Effective Diameter (ft):	17.0723
Vapor Space Outage (ft):	4.0000
Tank Shell Length (ft):	28.6000
Vapor Density	
Vapor Density (lb/cu ft):	0.0970
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	68.0000
Surface Temperature (psia):	7.9326
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700

TANKS 4.0 Report

Daily Total Solar Insulation Factor (Btu/sqft day):	1,765.3167	
i actor (Bruisqit day).	1,700.0107	
Vapor Space Expansion Factor		
Vapor Space Expansion Factor:	0.5343	
Daily Vapor Temperature Range (deg. R):	28.5089	
Daily Vapor Pressure Range (psia):	2.0818	
Breather Vent Press. Setting Range(psia):	0.0600	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (psia):	7.9326	
Vapor Pressure at Daily Minimum Liquid		
Surface Temperature (psia):	6.9456	
Vapor Pressure at Daily Maximum Liquid		
Surface Temperature (psia):	9.0274	
Daily Avg. Liquid Surface Temp. (deg R):	518.2062	
Daily Min. Liquid Surface Temp. (deg R):	511.0790	
Daily Max. Liquid Surface Temp. (deg R):	525.3334	
Daily Ambient Temp. Range (deg. R):	27.9250	
Vented Vapor Saturation Factor		
Vented Vapor Saturation Factor:	0.3729	
Vapor Pressure at Daily Average Liquid:		
Surface Temperature (psia):	7.9326	
Vapor Space Outage (ft):	4.0000	
Working Losses (Ib):	4,944.6540	
Vapor Molecular Weight (lb/lb-mole):	4,944.0540	
Vapor Pressure at Daily Average Liguid	08.0000	
Surface Temperature (psia):	7,9326	
Annual Net Throughput (gal/yr.):	510,000.0000	
Annual Turnovers:	51.0000	
Turnover Factor:	0.7549	
Tank Diameter (ft):	8.0000	
Working Loss Product Factor:	1.0000	
Working Loss Frouder / Bolor.	1.0000	
Total Losses (lb):	11,403.8814	

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

## **Emissions Report for: Annual**

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
E-85 Fuel	4,944.65	6,459.23	11,403.88					

EPA Tanks 4.09d Output Files for Unit ID 22015 Potential Emissions

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	22015 Albuquerque New Mexico Kirtland AFB Horizontal Tank E85 Tank at Gov't East Service Station
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	28.60 8.00 10,000.00 1,051.20 10,512,000.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good
<b>Breather Vent Settings</b> Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

#### 22015 - Horizontal Tank Albuquerque, New Mexico

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
E-85 Fuel	All	58.54	51.41	65.66	56.17	7.9326	6.9456	9.0274	68.0000			0.00	

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Annual Emission Calcaulations	
Standing Losses (lb):	6,459.2274
Vapor Space Volume (cu ft):	915.6642
Vapor Density (lb/cu ft):	0.0970
Vapor Space Expansion Factor:	0.5343
Vented Vapor Saturation Factor:	0.3729
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	915.6642
Tank Diameter (ft):	8.0000
Effective Diameter (ft):	17.0723
Vapor Space Outage (ft):	4.0000
Tank Shell Length (ft):	28.6000
Vapor Density	
Vapor Density (lb/cu ft):	0.0970
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	68.0000
Surface Temperature (psia):	7.9326
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700

TANKS 4.0 Report

Daily Total Solar Insulation		
Factor (Btu/sqft day):	1,765.3167	
Vapor Space Expansion Factor		
Vapor Space Expansion Factor:	0.5343	
Daily Vapor Temperature Range (deg. R):	28.5089	
Daily Vapor Pressure Range (psia):	2.0818	
Breather Vent Press. Setting Range(psia):	0.0600	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (psia):	7.9326	
Vapor Pressure at Daily Minimum Liquid		
Surface Temperature (psia):	6.9456	
Vapor Pressure at Daily Maximum Liquid		
Surface Temperature (psia):	9.0274	
Daily Avg. Liquid Surface Temp. (deg R):	518.2062	
Daily Min. Liquid Surface Temp. (deg R):	511.0790	
Daily Max. Liquid Surface Temp. (deg R):	525.3334	
Daily Ambient Temp. Range (deg. R):	27.9250	
Vented Vapor Saturation Factor		
Vented Vapor Saturation Factor:	0.3729	
Vapor Pressure at Daily Average Liquid:		
Surface Temperature (psia):	7.9326	
Vapor Space Outage (ft):	4.0000	
Working Losses (lb):	26,354.3637	
Vapor Molecular Weight (lb/lb-mole):	68.0000	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (psia):	7.9326	
Annual Net Throughput (gal/yr.):	10,512,000.0000	
Annual Turnovers:	1,051.2000	
Turnover Factor:	0.1952	
Tank Diameter (ft):	8.0000	
Working Loss Product Factor:	1.0000	
	22 842 5040	
Total Losses (lb):	32,813.5910	

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

## **Emissions Report for: Annual**

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
E-85 Fuel	26,354.36	6,459.23	32,813.59						

# **Emission Estimates**

## Permit 3101-RV1 – 898 Munition Squadron

Emission Unit IDs

19014, 14014, 25017, 15008

## Summary of Criteria Emissions for Kirtland AFB 898th Munitions Squadron

Process Equipment Unit No.		Potential Emissions (ton/yr)									
	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10µm	Particulate Matter <2.5µm			
1	Boiler, Bldg 27497, Unit ID 14014	2.25	2.68	0.68	0.016	0.20	0.20	0.20			
2	Emergency Generator, Bldg 27497, Unit ID 19014	20.20	76.04	2.14	0.036	2.38	2.38	2.38			
3	Gasoline Service Station, Building 27497, Unit IDs 15008 and 25017	0.00	0.00 '	52.56	0.00	0.00	0.00	0.00			
	Total	22.45	78.72	55.38	0.052	2.58	2.58	2.58			

		13.53	-	Annual	Emissio	ns (ton/yr)		
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10µm	Particulate Matter <2.5µm
1	Boiler, Bldg 27497, Unit ID 14014	2.25	2.68	0.68	0.016	0.20	0.20	0.20
2	Emergency Generator, Bldg 27497, Unit ID 19014	0.46	1.74	0.049	0.00082	0.054	0.054	0.054
3	Gasoline Service Station, Building 27497, Unit IDs 15008 and 25017	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Total	2.71	4.42	0.93	0.017	0.25	0.25	0.25

#### Summary of Worst-Case Boiler Emissions Criteria Pollutant Emission Estimation Spreadsheet Natural Gas Boiler at Building 27497 (Unit ID 14014) Process Equipment Unit No. 1

#### Boiler

#### 6,250,000 Btu/hour

Criteria Air Pollutants	Worst-Case Data Source ¹	Hourly Emissions ² (Ib/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF (Sheet 1)	0.51	2.25	2.25
Nitrogen Oxides	AP-42 EF (Sheet 1)	0.61	2.68	2.68
Particulate Matter	AP-42 EF (Sheet 1)	0.047	0.20	0.20
Particulate Matter <10µm	AP-42 EF (Sheet 1)	0.047	0.20	0.20
Particulate Matter <2.5µm	AP-42 EF (Sheet 1)	0.047	0.20	0.20
Sulfur Oxides	AP-42 EF (Sheet 1)	0.0037	0.016	0.016
Volatile Organic Compounds	Manufacturer EF (Sheet 2)	0.16	0.68	0.68

The boiler operates a maximum of 8,760 hours per year and is powered by natural gas

¹ Worst-Case Data Source Explanations:

AP-42 EF (Sheet 1): Emission calculations were performed using AP-42 Emission Factors Manufacturer EF (Sheet 2): Emission calculations were performed using Manufacturer Emission Factors

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 8,760 hours of operation per year. Refer to calculations on specific sheet for emission calculation methodology.

⁴ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

#### Sheet 1 - AP-42 Emission Factors **Criteria Pollutant Emission Estimation Spreadsheet** Natural Gas Boiler at Building 27497 (Unit ID 14014) **Process Equipment Unit No. 1**

Boiler

6,250,000 Btu/hour

1,020 Btu/scf Heating Value of Natural Gas¹

8,760 Annual Hours of Operation

Criteria Air Pollutants	AP-42 Emission Factors ² (Ib/10 ⁶ scf)	Emission Factors (Ib/MMBtu) ³	Hourly Emissions ⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	84.0	0.0824	0.51	2.25	2.25
Nitrogen Oxides	100.0	0.0980	0.61	2.68	2.68
Particulate Matter	7.6	0.0075	0.047	0.20	0.20
Particulate Matter <10µm ⁷	7.6	0.0075	0.047	0.20	0.20
Particulate Matter <2.5µm ⁸	7.6	0.0075	0.047	0.20	0.20
Sulfur Oxides	0.6	0.0006	0.0037	0.016	0.016
Volatile Organic Compounds	5.5	0.0054	0.034	0.15	0.15

The boiler operates a maximum of 8,760 hours per year and is powered by natural gas

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-1, 1.4-2 (July 1998).

³ The following equation was used to convert the AP-42 emission factors from lb/10⁶ scf to lb/MMBtu. EF (lb/MMBtu) = EF (lb/ $10^6$  scf) / Heating value of natural gas (BTU/scf)

where: EF = Emission Factor

⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor

⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 8,760

⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8,760 hours per year). The following equation was used to estimate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)

^{7,8} Assume Particulate Matter <2.5µm and Particulate Matter <10µm equal Particulate Matter.

#### Sheet 2 - Manufacturer Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Natural Gas Boiler at Building 27497 (Unit ID 14014) Process Equipment Unit No. 1

Boiler

6,250,000 Btu/hour

1,020 Btu/scf Heating Value of Natural Gas¹

8,760 Annual Hours of Operation

Criteria Air Pollutants	Manufacturer Emission Factors (Ib/MMBtu)	Hourly Emissions ² (lb/hr)	Maximum Anticipated Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	0.037	0.23	1.01	1.01
Nitrogen Oxides	0.088	0.55	2.41	2.41
Particulate Matter	0.0048	0.030	0.13	0.13
Particulate Matter <10μm⁵	0.0048	0.030	0.13	0.13
Particulate Matter <2.5µm ⁶	0.0048	0.030	0.13	0.13
Sulfur Oxides ⁷	0.00	0.00	0.00	0.00
Volatile Organic Compounds ⁸	0.025	0.16	0.68	0.68

The boiler operates a maximum of 8,760 hours per year and is powered by natural gas

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² The following equation was used to estimate hourly emissions for each pollutant:

Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor

³ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 8,760

⁴ Potential to Emit (PTE) was estimated based on the number of hours in a year (8,760 hours per year). The following equation was used to estimate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)

 5,6  Assume Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

⁷ The following manufacturer-provided equation was used to calculate the sulfur oxides emission factor:

Sulfur oxides emission factor = 1.05 * S

where: S = Percent sulfur by weight in fuel (Neglible from AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels)

⁸ Volatile Organic Compounds assumed to be equal to Hydrocarbons (HC)

#### AP-42 Emission Factors Hazardous Air Pollutant (HAP) Emission Estimation Spreadsheet Natural Gas Boiler at Building 27497 (Unit ID 14014) Process Equipment Unit No. 1

#### Boiler

6,250,000 Btu/hour

1,020 Btu/scf Heating Value of Natural Gas¹

8,760 Annual Hours of Operation

Hazardous Air Pollutants	CAS No.	AP-42 Emission Factors ² (lb/10 ⁶ scf)	Emission Factors ³ (Ib/MMBtu)	Hourly Emissions ⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
2-Methylnaphthalene ⁷	91-57-6	2.40E-05	2.35E-08	1.47E-07	6.44E-07	6.44E-07
3-Methylchloranthrene ^{7,9}	56-49-5	1.80E-06	1.76E-09	1.10E-08	4.83E-08	4.83E-08
7,12-Dimethylbenz(a)anthracene ^{7,9}	57-97-6	1.60E-05	1.57E-08	9.80E-08	4.29E-07	4.29E-07
Acenaphthene ^{7,9}	83-32-9	1.80E-06	1.76E-09	1.10E-08	4.83E-08	4.83E-08
Acenaphthylene ^{7,9}	208-96-8	1.80E-06	1.76E-09	1.10E-08	4.83E-08	4.83E-08
Anthracene ^{7,9}	120-12-7	2.40E-06	2.35E-09	1.47E-08	6.44E-08	6.44E-08
Arsenic ⁸	7440-38-2	2.00E-04	1.96E-07	1.23E-06	5.37E-06	5.37E-06
Benz(a)anthracene ^{7,9}	56-55-3	1.80E-06	1.76E-09	1.10E-08	4.83E-08	4.83E-08
Benzene	71-43-2	2.10E-03	2.06E-06	1.29E-05	5.64E-05	5.64E-05
Benzo(a)pyrene ^{7,9}	50-32-8	1.20E-06	1.18E-09	7.35E-09	3.22E-08	3.22E-08
Benzo(b)fluoranthene ^{7,9}	205-99-2	1.80E-06	1.76E-09	1.10E-08	4.83E-08	4.83E-08
Benzo(g,h,i)perylene ^{7,9}	191-24-2	1.20E-06	1.18E-09	7.35E-09	3.22E-08	3.22E-08
Benzo(k)fluoranthene ^{7,9}	207-08-9	1.80E-06	1.76E-09	1.10E-08	4.83E-08	4.83E-08
Beryllium ^{8,9}	7440-41-7	1.20E-05	1.18E-08	7.35E-08	3.22E-07	3.22E-07
Cadmium ⁸	7440-43-9	1.10E-03	1.08E-06	6.74E-06	2.95E-05	2.95E-05
Chromium ⁸	7440-47-3	1.40E-03	1.37E-06	8.58E-06	3.76E-05	3.76E-05
Chrysene ^{7,9}	218-01-9	1.80E-06	1.76E-09	1.10E-08	4.83E-08	4.83E-08
Cobalt ⁸	7440-48-4	8.40E-05	8.24E-08	5.15E-07	2.25E-06	2.25E-06
Dibenzo(a,h)anthracene ^{7,9}	53-70-3	1.20E-06	1.18E-09	7.35E-09	3.22E-08	3.22E-08
Dichlorobenzene	25321-22-6	1.20E-03	1.18E-06	7.35E-06	3.22E-05	3.22E-05
Fluoranthene ⁷	206-44-0	3.00E-06	2.94E-09	1.84E-08	8.05E-08	8.05E-08
Fluorene ⁷	86-73-7	2.80E-06	2.75E-09	1.72E-08	7.51E-08	7.51E-08
Formaldehyde	50-00-0	7.50E-02	7.35E-05	4.60E-04	2.01E-03	2.01E-03
Hexane	110-54-3	1.80E+00	1.76E-03	1.10E-02	4.83E-02	4.83E-02
Indeno(1,2,3-cd)pyrene ^{7,9}	193-39-5	1.80E-06	1.76E-09	1.10E-08	4.83E-08	4.83E-08
Lead	7439-92-1	5.00E-04	4.90E-07	3.06E-06	1.34E-05	1.34E-05
Manganese ⁸	7439-96-5	3.80E-04	3.73E-07	2.33E-06	1.02E-05	1.02E-05
Mercury ⁸	7439-97-6	2.60E-04	2.55E-07	1.59E-06	6.98E-06	6.98E-06
Naphthalene	91-20-3	6.10E-04	5.98E-07	3.74E-06	1.64E-05	1.64E-05
Nickel ⁸	7440-02-0	2.10E-03	2.06E-06	1.29E-05	5.64E-05	5.64E-05
Phenanathrene ⁷	85-01-8	1.70E-05	1.67E-08	1.04E-07	4.56E-07	4.56E-07
Pyrene ⁷	129-00-0	5.00E-06	4.90E-09	3.06E-08	1.34E-07	1.34E-07
Selenium ^{8,9}	7782-49-2	2.40E-05	2.35E-08	1.47E-07	6.44E-07	6.44E-07
Toluene	108-88-3	3.40E-03	3.33E-06	2.08E-05	9.13E-05	9.13E-05
Total POM ¹⁰		8.82E-05	8.65E-08	5.40E-07	2.37E-06	2.37E-06
Total HAP				1.16E-02	5.07E-02	5.07E-02

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-2, 1.4-3, and 1.4-4 (July 1998).

- ³ The following equation was used to convert the AP-42 emission factors from lb/10⁶ scf to lb/MMBtu.
   EF (lb/MMBtu) = EF (lb/10⁶ scf) / Heating value of natural gas (BTU/scf) where: EF = Emission Factor
- ⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor

⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 8,760

⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8760 hours per year). The following equation was used to estimate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)

⁷ Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-3 (July 1998).

⁸ Metals from natural gas combustion from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-4 (July 1998).

⁹ All emission factors where the value was less than, i.e., <1, a conservative approach was used and the value shown was used, i.e., 1.

¹⁰ Total POM is not in the sum because individual constituents are already accounted for.

#### Summary of Worst-Case Generator Emissions Criteria Pollutant Emission Estimation Spreadsheet Emergency Generator at Building 27497 (Unit ID 19014) Process Equipment Unit No. 2

#### Generator

775 hp

Criteria Air Pollutants	Worst-Case Data Source ¹	Hourly Emissions ² (lb/hr)	Annual Emissions ³ (ton/yr)	PTE ⁴ (ton/yr)
Carbon Monoxide	AP-42 EF (Sheet 1)	4.61	0.46	20.20
Nitrogen Oxides	AP-42 EF (Sheet 1)	17.36	1.74	76.04
Particulate Matter	AP-42 EF (Sheet 1)	0.54	0.05	2.38
Particulate Matter <10µm	AP-42 EF (Sheet 1)	0.54	0.05	2.38
Particulate Matter <2.5µm	AP-42 EF (Sheet 1)	0.54	0.05	2.38
Sulfur Oxides	AP-42 EF (Sheet 1)	0.0082	0.00082	0.036
Volatile Organic Compounds	AP-42 EF (Sheet 1)	0.49	0.05	2.14

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Worst-Case Data Source Explanations:

AP-42 EF (Sheet 1): Emission calculations were performed using AP-42 Emission Factors. Manufacturer EF (Sheet 2): Manufacturer emission factors were not available.

² Refer to calculations on specific sheet for emission calculation methodology.

³ Annual emissions are based on 200 hours of operation per year. Refer to calculations on specific sheet for emission calculation methodology.

[#] Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

#### Sheet 1 - AP-42 Emission Factors, Calculated Fuel Flow Criteria Pollutant Emission Estimation Spreadsheet Emergency Generator at Building 27497 (Unit ID 19014) Process Equipment Unit No. 2

#### Generator

775 hp

200 Annual Hours of Operation

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.85	39.6	137000	4.61	0.46	20.20
Nitrogen Oxides	3.2	39.6	137000	17.36	1.74	76.04
Particulate Matter	0.1	39.6	137000	0.54	0.054	2.38
Particulate Matter <10µm7	0.1	39.6	137000	0.54	0.054	2.38
Particulate Matter <2.5µm ⁸	0.1	39.6	137000	0.54	0.054	2.38
Sulfur Oxides ⁹	0.0015	39.6	137000	0.0082	0.00082	0.036
Volatile Organic Compounds ¹⁰	0.09	39.6	137000	0.49	0.049	2.14

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.4 Large Stationary Diesel and all Stationary Dual-fuel Engines,

Table 3.4-1 (October 1996).

² The following equation was used to calculate hourly fuel use: Hourly fuel use = hp * Brake specific fuel consumption (7000 Btu/hp-hr) * 1/HV (Btu/gal)

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137000 Btu/gal.

- ⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor HV = Heating Value
- ⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁸ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

^{7.8} Assume Particulate Matter <2.5µm and Particulate Matter <10µm equal Particulate Matter.

⁹ The following equation was used to calculate the sulfur oxides emission factor: Sulfur oxides emission factor = 1.01 * S where: S = Percent sulfur in diesel fuel (Kirtland Air Force Base Standard of 0.0015%)

¹⁰ Volatile Organic Compounds assumed to be Total Organic Compounds (TOC)

Sheet 2 - Manufacturer Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Emergency Generator at Building 27497 (Unit ID 19014) Process Equipment Unit No. 2

Manufacturer Emission Factors Not Available

#### AP-42 Emission Methodology VOC Emission Estimation Spreadsheet Gasoline Service Station at Building 27497 (Unit IDs 15008 and 25017) Process Equipment Unit No. 3

#### VOC Emissions from Gasoline Storage and Dispensing 10 Nozzle Dispensing Rate¹ (gal/min)

20.000 Annual Throughput² (gal/yr)

	, and a model of the second			
Loss Category	VOC Emission Factor ³ (lb/1000-gal)	Hourly Emissions ⁴ (lb/hr)	Annual Emissions⁵ (ton/yr)	Potential to Emit VOC ⁶ (ton/yr)
UST Filling ⁷	7.30	4.38	0.073	19.18
UST Breathing & Emptying	1.00	0.60	0.010	2.63
Displacement Losses from Vehicle Fueling ⁸	11.00	6.60	0.11	28.91
Spillage during Vehicle Fueling	0.70	0.42	0.007	1.84
Total Loss from Vehicle Fueling	20.0	12.00	0.20	52.56

¹ Nozzle dispensing rate based on the standard rate specified by 40 CFR 80.22 (j).

² Annual requested throughput.

³ Emission factors (EF) are from AP-42 Section 5.2: Transportation and Marketing of Petroleum Liquids, Table 5.2-7 (June 2008).

⁴ The following equation was used to calculate hourly emissions: Hourly Emissions (lb/hr) = VOC Emission Factor (lbs/1000-gal) * Nozzle Dispensing Rate (gal/min) * 60 (min/hr) / 1000

⁵ The following equation was used to calculate annual emissions: Annual emissions (ton/yr) = Annual Throughput (gal/yr) / 1000 * VOC Emission Factor (lb/1000-gal) / 2000 (lbs/ton)

⁶ Potential to emit (PTE) was calculated based on the number of hours in a year (8760 hours per year) The following equation was used to calculate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ EF for UST Filling is for unbalanced, submerged filling.

⁸ EF for Displacement Losses is for uncontrolled losses.

# **Emission Estimates**

Permit 3102 – Airfield Operations (SR)

Emission Unit IDs

14168, 14169, 19140

# Summary of Criteria Emissions for Kirtland AFB Airfield Operations

Process Equipment Unit No.Carbon MonoxideNitroge Oxide11Boiler, Bldg 334, ID 141681.892.252Boiler, Bldg 334, ID 141691.892.253Boiler, Bldg 334, ID 141691.892.253Boiler, Bldg 334, ID 141692.9713.79					Potentia	Potential Emissions (ton/yr)	(ton/yr)		
1.89 1.89 2.97	Process quipment Unit No.	Emission (	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10µm	Particulate Matter <2.5μm
1.89 2.97	1		1.89	2.25	0.12	0.013	0.17	0.17	0.17
2.97	7		1.89	2.25	0.12	0.013	0.17	0.17	0.17
	n	Emergency Generator, Building 334, ID 19140	2.97	13.79	1.09	0.91	26:0	0.97	0.97
Total 6.74 18.28		Total	6.74	18.28	1.34	0.93	1.31	1.31	1.31

				Annua	Annual Emissions (Ib/hr)	(Ib/hr)		
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10μm	Particulate Matter <2.5μm
1	Boiler, Bldg 334, ID 14168	0.43	0.51	0.03	0.003	0.04	0.04	0.04
2	Boiler, Bldg 334, ID 14169	0.43	0.51	0.03	0.003	0.04	0.04	0.04
3	Emergency Generator, Building 334, ID 19140	0.68	3.15	0.25	0.21	0.22	0.22	0.22
	Total	1.54	4.17	0.31	0.21	0.30	0.30	0:30

				Annual	Annual Emissions (ton/yr)	(ton/yr)		
Process Equipment Unit No.	Emission Source	Carbon Monoxide	Nitrogen Oxides	Volatile Organic Compounds	Sulfur Oxides	Particulate Matter	Particulate Matter <10µm	Particulate Matter <2.5μm
£	Boiler, Bldg 334, ID 14168	1.26	1.50	0.08	0.009	0.11	0.11	0.11
5	Boiler, Bldg 334, ID 14169	1.26	1.50	0.08	0.009	0.11	0.11	0.11
З	Emergency Generator, Building 334, ID 19140	0.07	0.31	0.02	0.02	0.02	0.02	0.02
	Total	2.58	3.31	0.19	0.04	0.25	0.25	0.25

#### AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Natural Gas Boiler at Building 334 (Unit ID 14168) Process Equipment Unit No. 1

#### Boiler

5,230,000 Btu/Hour

1,020 Btu/scf Heating Value of Natural Gas¹

5,832 Annual Hours of Operation (1 Oct - 31 May)

Criteria Air Pollutants	AP-42 Emission Factors ² (Ib/10 ⁶ scf)	Emission Factors (lb/MMBtu) ³	Hourly Emissions ⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	84	0.082	0.43	1.26	1.89
Nitrogen Oxides	100	0.098	0.51	1.50	2.25
Particulate Matter	7.6	0.0075	0.039	0.11	0.17
Particulate Matter <10µm ⁷	7.6	0.0075	0.039	0.11	0.17
Particulate Matter <2.5µm ⁸	7.6	0.0075	0.039	0.11	0.17
Sulfur Oxides	0.6	0.00059	0.0031	0.0090	0.013
Volatile Organic Compounds	5.5	0.0054	0.028	0.082	0.12

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-1, 1.4-2 (July 1998).

 3  The following equation was used to convert the AP-42 emission factors from Ib/10 6  scf to Ib/MMBtu.

EF (lb/MMBtu) = EF (lb/ $10^6$  scf) / Heating value of natural gas (BTU/scf) where: EF = Emission Factor

⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor

⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 5,832

⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8,760 hours per year). The following equation was used to estimate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)

 7,8  Assume Particulate Matter <2.5  $\mu m$  and Particulate Matter <10  $\mu m$  equal Particulate Matter.

## AP-42 Emission Factors Hazardous Air Pollutant (HAP) Emission Estimation Spreadsheet Natural Gas Boiler at Building 334 (Unit ID 14168) Process Equipment Unit No. 1

#### Boiler

#### 5,230,000 Btu/Hour

1,020 Btu/scf Heating Value of Natural Gas¹

5,832 Annual Hours of Operation (1 Oct - 31 May)

Hazardous Air Pollutants	CAS No.	AP-42 Emission Factors ² (lb/10 ⁶ scf)	Emission Factors ³ (Ib/MMBtu)	Hourly Emissions⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
2-Methylnaphthalene ⁷	91-57-6	2.4E-05	2.4E-08	1.2E-07	3.6E-07	5.4E-07
3-Methylchloranthrene ^{7,9}	56-49-5	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
7,12-Dimethylbenz(a)anthracene ^{7,9}	57-97-6	1.6E-05	1.6E-08	8.2E-08	2.4E-07	3.6E-07
Acenaphthene ^{7,9}	83-32-9	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Acenaphthylene ^{7,9}	208-96-8	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Anthracene ^{7,9}	120-12-7	2.4E-06	2.4E-09	1.2E-08	3.6E-08	5.4E-08
Arsenic ⁸	7440-38-2	2.0E-04	2.0E-07	1.0E-06	3.0E-06	4.5E-06
Benz(a)anthracene ^{7,9}	56-55-3	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Benzene	71-43-2	2.1E-03	2.1E-06	1.1E-05	3.1E-05	4.7E-05
Benzo(a)pyrene ^{7, 9}	50-32-8	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Benzo(b)fluoranthene ^{7, 9}	205-99-2	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Benzo(g,h,i)perylene ^{7, 9}	191-24-2	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Benzo(k)fluoranthene ^{7, 9}	207-08-9	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Beryllium ^{8, 9}	7440-41-7	1.2E-05	1.2E-08	6.2E-08	1.8E-07	2.7E-07
Cadmium ⁸	7440-43-9	1.1E-03	1.1E-06	5.6E-06	1.6E-05	2.5E-05
Chromium ⁸	7440-47-3	1.4E-03	1.4E-06	7.2E-06	2.1E-05	3.1E-05
Chrysene ^{7, 9}	218-01-9	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Cobalt ⁸	7440-48-4	8.4E-05	8.2E-08	4.3E-07	1.3E-06	1.9E-06
Dibenzo(a,h)anthracene ^{7,9}	53-70-3	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Dichlorobenzene	25321-22-6	1.2E-03	1.2E-06	6.2E-06	1.8E-05	2.7E-05
Fluoranthene ⁷	206-44-0	3.0E-06	2.9E-09	1.5E-08	4.5E-08	6.7E-08
Fluorene ⁷	86-73-7	2.8E-06	2.7E-09	1.4E-08	4.2E-08	6.3E-08
Formaldehyde	50-00-0	7.5E-02	7.4E-05	3.8E-04	1.1E-03	1.7E-03
Hexane	110-54-3	1.8E+00	1.8E-03	9.2E-03	2.7E-02	4.0E-02
Indeno(1,2,3-cd)pyrene ^{7,9}	193-39-5	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Lead	7439-92-1	5.0E-04	4.9E-07	2.6E-06	7.5E-06	1.1E-05
Manganese ⁸	7439-96-5	3.8E-04	3.7E-07	1.9E-06	5.7E-06	8.5E-06
Mercury ⁸	7439-97-6	2.6E-04	2.5E-07	1.3E-06	3.9E-06	5.8E-06
Naphthalene	91-20-3	6.1E-04	6.0E-07	3.1E-06	9.1E-06	1.4E-05
Nickel ⁸	7440-02-0	2.1E-03	2.1E-06	1.1E-05	3.1E-05	4.7E-05
Phenanathrene ⁷	85-01-8	1.7E-05	1.7E-08	8.7E-08	2.5E-07	3.8E-07
Pyrene ⁷	129-00-0	5.0E-06	4.9E-09	2.6E-08	7.5E-08	1.1E-07
Selenium ^{8, 9}	7782-49-2	2.4E-05	2.4E-08	1.2E-07	3.6E-07	5.4E-07
Toluene	108-88-3	3.4E-03	3.3E-06	1.7E-05	5.1E-05	7.6E-05
Total POM ¹⁰		8.8E-05	8.6E-08	4.5E-07	1.3E-06	2.0E-06
Total HAP				9.7E-03	2.8E-02	4.2E-02

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-2, 1.4-3, and 1.4-4 (July 1998).

- ³ The following equation was used to convert the AP-42 emission factors from lb/10⁶ scf to lb/MMBtu.
   EF (lb/MMBtu) = EF (lb/10⁶ scf) / Heating value of natural gas (BTU/scf) where: EF = Emission Factor
- ⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor
- ⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 5,832
- ⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8760 hours per year). The following equation was used to estimate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)
- ⁷ Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-3 (July 1998).

⁸ Metals from natural gas combustion from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-4 (July 1998).

⁹ All emission factors where the value was less than, i.e., <1, a conservative approach was used and the value shown was used, i.e., 1.

¹⁰ Total POM is not in the sum because individual constituents are already accounted for.

# AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Natural Gas Boiler at Building 334 (Unit ID 14169) Process Equipment Unit No. 2

### Boiler

5,230,000 Btu/Hour

1,020 Btu/scf Heating Value of Natural Gas¹

5,832 Annual Hours of Operation (1 Oct - 31 May)

Criteria Air Pollutants	AP-42 Emission Factors ² (Ib/10 ⁶ scf)	Emission Factors (lb/MMBtu) ³	Hourly Emissions ⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	84	0.082	0.43	1.26	1.89
Nitrogen Oxides	100	0.098	0.51	1.50	2.25
Particulate Matter	7.6	0.0075	0.039	0.11	0.17
Particulate Matter <10µm ⁷	7.6	0.0075	0.039	0.11	0.17
Particulate Matter <2.5µm ⁸	7.6	0.0075	0.039	0.11	0.17
Sulfur Oxides	0.6	0.00059	0.0031	0.0090	0.013
Volatile Organic Compounds	5.5	0.0054	0.028	0.082	0.12

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-1, 1.4-2 (July 1998).

³ The following equation was used to convert the AP-42 emission factors from lb/10⁶ scf to lb/MMBtu.

EF (lb/MMBtu) = EF (lb/ $10^6$  scf) / Heating value of natural gas (BTU/scf) where: EF = Emission Factor

⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor

⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 5,832

⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8,760 hours per year). The following equation was used to estimate PTE:

PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)

^{7,8} Assume Particulate Matter <2.5µm and Particulate Matter <10µm equal Particulate Matter.

# AP-42 Emission Factors Hazardous Air Pollutant (HAP) Emission Estimation Spreadsheet Natural Gas Boiler at Building 334 (Unit ID 14169) Process Equipment Unit No. 2

# Boiler

5,230,000 Btu/Hour

1,020 Btu/scf Heating Value of Natural Gas¹

5,832 Annual Hours of Operation (1 Oct - 31 May)

Hazardous Air Pollutants	CAS No.	AP-42 Emission Factors ² (Ib/10 ⁶ scf)	Emission Factors ³ (Ib/MMBtu)	Hourly Emissions ⁴ (Ib/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
2-Methylnaphthalene ⁷	91-57-6	2.4E-05	2.4E-08	1.2E-07	3.6E-07	5.4E-07
3-Methylchloranthrene ^{7, 9}	56-49-5	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
7,12-Dimethylbenz(a)anthracene ^{7,9}	57-97-6	1.6E-05	1.6E-08	8.2E-08	2.4E-07	3.6E-07
Acenaphthene ^{7,9}	83-32-9	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Acenaphthylene ^{7, 9}	208-96-8	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Anthracene ^{7,9}	120-12-7	2.4E-06	2.4E-09	1.2E-08	3.6E-08	5.4E-08
Arsenic ⁸	7440-38-2	2.0E-04	2.0E-07	1.0E-06	3.0E-06	4.5E-06
Benz(a)anthracene ^{7,9}	56-55-3	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Benzene	71-43-2	2.1E-03	2.1E-06	1.1E-05	3.1E-05	4.7E-05
Benzo(a)pyrene ^{7, 9}	50-32-8	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Benzo(b)fluoranthene ^{7, 9}	205-99-2	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Benzo(g,h,i)perylene ^{7,9}	191-24-2	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Benzo(k)fluoranthene ^{7, 9}	207-08-9	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Beryllium ^{8, 9}	7440-41-7	1.2E-05	1.2E-08	6.2E-08	1.8E-07	2.7E-07
Cadmium ⁸	7440-43-9	1.1E-03	1.1E-06	5.6E-06	1.6E-05	2.5E-05
Chromium ⁸	7440-47-3	1.4E-03	1.4E-06	7.2E-06	2.1E-05	3.1E-05
Chrysene ^{7, 9}	218-01-9	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Cobalt ⁸	7440-48-4	8.4E-05	8.2E-08	4.3E-07	1.3E-06	1.9E-06
Dibenzo(a,h)anthracene ^{7,9}	53-70-3	1.2E-06	1.2E-09	6.2E-09	1.8E-08	2.7E-08
Dichlorobenzene	25321-22-6	1.2E-03	1.2E-06	6.2E-06	1.8E-05	2.7E-05
Fluoranthene ⁷	206-44-0	3.0E-06	2.9E-09	1.5E-08	4.5E-08	6.7E-08
Fluorene ⁷	86-73-7	2.8E-06	2.7E-09	1.4E-08	4.2E-08	6.3E-08
Formaldehyde	50-00-0	7.5E-02	7.4E-05	3.8E-04	1.1E-03	1.7E-03
Hexane	110-54-3	1.8E+00	1.8E-03	9.2E-03	2.7E-02	4.0E-02
Indeno(1,2,3-cd)pyrene ^{7,9}	193-39-5	1.8E-06	1.8E-09	9.2E-09	2.7E-08	4.0E-08
Lead	7439-92-1	5.0E-04	4.9E-07	2.6E-06	7.5E-06	1.1E-05
Manganese ⁸	7439-96-5	3.8E-04	3.7E-07	1.9E-06	5.7E-06	8.5E-06
Mercury ⁸	7439-97-6	2.6E-04	2.5E-07	1.3E-06	3.9E-06	5.8E-06
Naphthalene	91-20-3	6.1E-04	6.0E-07	3.1E-06	9.1E-06	1.4E-05
Nickel ⁸	7440-02-0	2.1E-03	2.1E-06	1.1E-05	3.1E-05	4.7E-05
Phenanathrene ⁷	85-01-8	1.7E-05	1.7E-08	8.7E-08	2.5E-07	3.8E-07
Pyrene ⁷	129-00-0	5.0E-06	4.9E-09	2.6E-08	7.5E-08	1.1E-07
Selenium ^{8, 9}	7782-49-2	2.4E-05	2.4E-08	1.2E-07	3.6E-07	5.4E-07
Toluene	108-88-3	3.4E-03	3.3E-06	1.7E-05	5.1E-05	7.6E-05
Total POM ¹⁰		8.8E-05	8.6E-08	4.5E-07	1.3E-06	2.0E-06
Total HAP				9.7E-03	2.8E-02	4.2E-02

¹ The heating value (HV) of natural gas is given in AP-42 Section 1.4.1 Natural Gas Combustion, General (July 1998) as 1,020 Btu/scf.

² Emission factors from EPA AP-42 Section 1.4 Natural Gas Combustion, Tables 1.4-2, 1.4-3, and 1.4-4 (July 1998).

- ³ The following equation was used to convert the AP-42 emission factors from lb/10⁶ scf to lb/MMBtu.
   EF (lb/MMBtu) = EF (lb/10⁶ scf) / Heating value of natural gas (BTU/scf) where: EF = Emission Factor
- ⁴ The following equation was used to estimate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MMBtu) * (Btu Rating (Btu/hr) / 1,000,000) where: EF = Emission Factor

⁵ The following equation was used to estimate annual emissions for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * Annual hours (hrs/yr) / 2,000 (lb/ton) where: Annual hours = 5,832

⁶ Potential to Emit (PTE) was estimated based on the number of hours in a year (8760 hours per year). The following equation was used to estimate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8,760 (hrs/yr) / 2,000 (lb/ton)

⁷ Polycyclic Organic Matter (POM) POM is a HAP as defined by Section 112(b) of the Clean Air Act from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-3 (July 1998).

⁸ Metals from natural gas combustion from AP-42 Section 1.4 Natural Gas Combustion, Table 1.4-4 (July 1998).

⁹ All emission factors where the value was less than, i.e., <1, a conservative approach was used and the value shown was used, i.e., 1.

¹⁰ Total POM is not in the sum because individual constituents are already accounted for.

# AP-42 Emission Factors, Calculated Fuel Flow Emission Estimation Spreadsheet Emergency Generator at Building 334 (Unit ID 19140) Process Equipment Unit No. 3

### Generator 102 hp 200 Annual Hours of Operation

Criteria Air Pollutants	AP-42 Emission Factors ¹ (Ib/MMBtu)	Fuel Use ² (gal/hr)	Heating Value (HV) ³ (Btu/gal)	Hourly Emissions ⁴ (lb/hr)	Maximum Anticipated Annual Emissions ⁵ (ton/yr)	PTE ⁶ (ton/yr)
Carbon Monoxide	0.95	5.2	137000	0.68	0.068	2.971
Nitrogen Oxides	4.41	5.2	137000	3.15	0.315	13.791
Particulate Matter ⁷	0.31	5.2	137000	0.22	0.022	0.969
Particulate Matter <10µm	0.31	5.2	137000	0.22	0.022	0.969
Particulate Matter <2.5µm ⁸	0.31	5.2	137000	0.22	0.022	0.969
Sulfur Oxides	0.29	5.2	137000	0.21	0.021	0.907
Volatile Organic Compounds ⁹	0.35	5.2	137000	0.25	0.025	1.095

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996).

² The following equation was used to calculate hourly fuel use: Hourly fuel use = hp * Brake specific fuel consumption (7000 Btu/hp-hr) * 1/HV (Btu/gal)

³ The heating value (HV) of diesel fuel is given in AP-42 Appendix A: Miscellaneous Data & Conversion Factors (September 1985), Typical Parameters of Various Fuels as 137,000 Btu/gal.

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: EF = Emission Factor HV = Heating Value

⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 200 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

^{7,8} Assume Particulate Matter <2.5μm and Particulate Matter equal Particulate Matter <10mm.

⁹ Volatile Organic Compounds assumed to be Total Organic Compounds (TOC).

# Permit 3128 – 58 SOW Bldg. 482 Paint Booth

Emission Unit ID

	Table C-1. Wo	orst-Case Hour	ly and Potential Annual Emissic	ons of VO	C and Vola	tile HAPs	
Flow Rate ¹ (gal/hr)	Maximum Density ² (lb/gal)	Maximum Paint Usage ³ (lb/hr)	Pollutant	Maximum Pollutant Content ⁴ (wt. %)	Maximum Pollutant Emissions ⁵ (lb/hr)	Potential Hours of Operation (hr/yr)	Potential Uncontrolled Pollutant Emissions ⁶ (ton/yr)
3.0	12.10	36.3	VOC	100.0%	36.30	8760	158.99
3.0	12.10	36.3	Benzene	1.0%	0.36	8760	1.6
3.0	12.10	36.3	Cobalt 2-Ethylhexanoate	0.5%	0.18	8760	0.8
3.0	12.10	36.3	Diethylene Glycol Monobutyl Ether	1.0%	0.36	8760	1.6
3.0	12.10	36.3	Diethylene Glycol Monoethyl Ether	3.0%	1.09	8760	4.8
3.0	12.10	36.3	Diethylene Glycol Monomethyl Ether	5.0%	1.82	8760	7.9
3.0	12.10	36.3	Ethylbenzene	10.0%	3.63	8760	15.9
3.0	12.10	36.3	Ethylene Glycol	5.0%	1.82	8760	7.9
3.0	12.10	36.3	Ethylene Glycol Monopropyl Ether	20.0%	7.26	8760	31.8
3.0	12.10	36.3	Formaldehyde	1.0%	0.36	8760	1.6
3.0	12.10	36.3	Toluene	30.0%	10.89	8761	47.7
3.0	12.10	36.3	Xylene	100.0%	36.30	8760	159.0

¹ Flow rate based on maximum of one gun spraying at a time at an assumed 3.0 gal/hr per gun.

² Maximum density is based on the maximum density of all products.

³ The following equation was used to calculate maximum paint usage: Maximum Paint Usage (lb/hr) = Flow Rate (gal/hr) * Maximum Density (lb/gal)

⁴ Maximum pollutant content obtained by evaluating all coatings listed on sheet "C-3" for the highest percentage by weight content of the constituent.

⁵ The following equation was used to calculate maximum pollutant emissions for VOC and Volatile HAP: Maximum Pollutant Emissions (lb/hr) = Maximum Paint Usage (lb/hr) * Maximum Pollutant Content (wt.%) / 100

⁶ The following equation was used to calculate potential uncontrolled pollutant emissions: Potential Uncontrolled Pollutant Emissions (ton/yr) = Maximum Pollutant Emissions (lb/hr) * Potential Hours of Operation (hr/yr) / 2000 (lb/ton)

	Table C-	Table C-2. Worst-Case Hourly	case Hourly and Potential Annual Emissions of Particulate Matter (PM) and Particulate HAPs	nual Emis	sions of Pa	Irticulate M	latter (PM) ¿	and Particu	Ilate HAPs	
Flow Rate ¹ (gal/hr)	Maximum Density ² (Ib/gal)	Maximum Paint Usage ³ (lb/hr)	Pollutant	Maximum Pollutant Content ⁴ (wt. %)	Transfer Efficiency ⁵ (%)	Control Efficiency ⁶ (%)	Maximum Uncontrolled Pollutant Emissions ⁷ (lb/hr)	Controlled Pollutant Emissions ⁸ (lb/hr)	Potential Hours of Operation (hr/yr)	Potential Uncontrolled Pollutant Emissions ⁹ (ton/yr)
3.0	12.10	36.3	PM	98.6%	65.0%	89.8%	12.53	1.28	8760	54.87
3.0	12.10	36.3	PM-10	98.6%	65.0%	89.8%	12.53	1.28	8760	54.87
3.0	12.10	36.3	PM-2.5	98.6%	65.0%	89.8%	12.53	1.28	8760	54.87
3.0	12.10	36.3	C.I. Pigment Red 3	10.0%	65.0%	89.8%	1.271	0.13	8760	5.56
3.0	12.10	36.3	Copper Phthalocyanine	1.4%	65.0%	89.8%	0.18	0.02	8760	0.78

¹ Flow rate based on maximum of one gun spraying at a time at an assumed 3.0 gal/hr per gun.

² Maximum density is based on the maximum density of all products.

 3  The following equation was used to calculate maximum paint usage:

Maximum Paint Usage (lb/hr) = Flow Rate (gal/hr) * Maximum Density (lb/gal)

⁴ Maximum pollutant content obtained by evaluating all coatings listed on sheet "C-4" for the highest percentage by weight content of the constituent.

 5  Since most coatings are applied with an HVLP spray gun only, assumed a transfer efficiency of 65%.

⁶ Paint filter control efficiencies for liquids were determined based on the manufacturer filter specifications included in Attachment I.

⁷ The following equation was used to calculate maximum uncontrolled pollutant emissions for PM, PM-10, PM-2.5, and HAP:

Maximum Uncontrolled Pollutant Emissions (lb/hr) = Maximum Paint Usage (lb/hr) * [Maximum Pollutant Content (wt. %) / 100] * [1-Transfer Efficiency (% / 100)]

Controlled Pollutant Emissions (lb/hr) = Maximum Uncontrolled Pollutant Emissions (lb/hr) * [1-Control Efficiency (% / 100)] ⁸ The following equation was used to calculate controlled pollutant emissions for PM, PM-10, PM-2.5, and HAP:

⁹ The following equation was used to calculate potential uncontrolled pollutant emissions:

Potential Uncontrolled Pollutant Emissions (ton/yr) = Maximum Uncontrolled Pollutant Emissions (lb/hr) * Potential Hours of Operation (hr/yr) / 2000 (lb/ton)

Used International (Martineous)         National (Martineous)         National (Martineous) <th>even characteria de la contracteria contracteria de la contracteria la contracteria de la contracteria la contracteria de la contracteria la contracteria de la contracteria la contracteria de la contrac</th> <th>the DetryMane Closed Monoconstrainty (M. 50) (M. 50) (M. 50)</th> <th>Diettybine Okca Monomentin Ener (onnyn)</th> <th>Ethylberzene Ethylberzene (4, 5%) 1,00% 5,00% 5,00% 5,00%</th> <th>e Ethybenzene (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (nor/yr) (nor/yr</th> <th>Ethylene Glycol (wt. %)</th> <th></th> <th>-</th> <th>Effryfene Glycol Monopropyl</th> <th></th> <th></th> <th>_</th> <th></th> <th>_</th> <th>Γ</th>	even characteria de la contracteria contracteria de la contracteria la contracteria de la contracteria la contracteria de la contracteria la contracteria de la contracteria la contracteria de la contrac	the DetryMane Closed Monoconstrainty (M. 50) (M. 50) (M. 50)	Diettybine Okca Monomentin Ener (onnyn)	Ethylberzene Ethylberzene (4, 5%) 1,00% 5,00% 5,00% 5,00%	e Ethybenzene (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (non/yr) (nor/yr) (nor/yr	Ethylene Glycol (wt. %)		-	Effryfene Glycol Monopropyl			_		_	Γ
Image         Manuely member         Manuely member </th <th>Detry ten e diverse Money (El Fer Ant %)</th> <th></th> <th></th> <th></th> <th></th> <th>Ethylene Glycol (wt. %)</th> <th>-</th> <th>_</th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th>	Detry ten e diverse Money (El Fer Ant %)					Ethylene Glycol (wt. %)	-	_	_						_
900901933         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	10%			1.00% 10.00% 5.00% 5.00% 0.50%	0.0003 0.0003 0.0003 0.002 0.002 0.002		Glycol (ton/yr)	Effer (wt. %)	_	Formaldehyde Formaldehyde (km. %)		Toluene Toluene (wt. %) (ton/yr)	are Xylene yr) (wt. %)	Xylene (tonlyr)	e ()
International         Internat         International         International	10%			1.00% 100% 5.00% 5.00% 0.50%	0.003 0.003 0.002 0.002 0.002 0.002					_				Η	
International and constraints         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	3.0%			10.00% 5.00% 5.00% 0.50%	0.003 0.002 0.002 0.002 0.002 0.002						5.	_			
Mitter         Directional         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	100			1.00% 5.00% 5.00% 0.50%	0.002 0.002 0.002 0.002 0.002						₽	10.00% 0.003	33 20.00%	0.006	
Influe         Descriptional         10         7.30         6.00         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100	900 F			5.00% 5.00% 0.50%	0.002						ó				J
III III III III III III IIII IIII III	1008 1008			5.00% 0.50%	0.002								10:00%		]
International         Internat         International         International	10%			5.00% 0.50%	0.002								10.00%	0.003	_
Distriction         10         70         70         60         600         0000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         60000         6000         6000	1008			5.00% 0.50%	0.002						30	30.00% 0.01			
Interfut.Action         100         700         700         000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         000000         000000         000000         000000         000000         000000         000000         000000         000000         0000000         0000000         0000000         0000000         0000000         00000000         00000000         00000000         00000000         00000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         000000000         0000000000         0000000000         0000000000         000000000         000000000         0000000000         0000000000         00000000000         0000000000         0000000000         00000000000         000000000000         0000000000000         0000000000000000000         000000000000000000000         000000000000000000000000000000000000	10%			9090	0.0002								10.00%	0.004	
0         100         71         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101	30%							15.00%	0.005		20	20.00% 0.00	37 5.00%	0.002	
0100xxxx         100         7:0         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         10	3.00%														
0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	88												100.00%	0.04	
PO0000004         100         670         284         001         204         0010         204         0010         204         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0	300%														
Biologonalizatione         0         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000	300%							20.00%	0.009	1.00% 0.0	0.0004				
Image: processer (marked)         Im	300%									┝					
Intermediation         00         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         <	3.00%										0	0.01% 0.000	.000005 1.15%	0.0006	\$
me         001007701         00         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010         0010 <t< td=""><td>3.00%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	3.00%														
NOTIVETATION         10         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103 <th< td=""><td>3.00%</td><td></td><td></td><td></td><td></td><td>5.00%</td><td>0.002</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	3.00%					5.00%	0.002								
000071011         10         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	3.00%														
Image: section of the sectio															
International         Internat		5.00%	0.002												
Internation															
Image         Display (20)         Col         73         73         73           mass         Display (20)         10         73         90         30           Display (20)         10         73         73         73         73           Display (20)         0         120         120         20         20           Display (20)         0         120         120         20         20           Display (20)         0         120         120         20         20           Display (20)         0         122         20         20         20           Display (20)         0         120         20         20         20           Display (20)         0         122         20				1.00%	0.0004								5.00%	0.002	
ame         BIORNLAGZ         100         100         100         100           ame         BIORNLAGZ         10         200         200         0.0           ame         BIORNLAGZ         10         200         200         0.0           ame         BIORNLAGZ         10         200         200         0.0           BIORNLAGG         0         1200         200         0.0         0.0           DORDRAGIO         0         1200         200         0.0         0.0           DORDRAGIO         0         1200         200         0.0         0.0         0.0           Atomic         DORDRAGIO         0         0.0         0.0         0.0         0.0         0.0         0.0           Atomic         DORDRAGIO         0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0				0.30%	0.0001								1.00%	0.0004	4
and         Direction         Direciood <thdirection< th=""> <thdireci< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdireci<></thdirection<>															
Interface         Interface <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
Monte         Distribution         Distribution <thdistribution< th="">         Distribution</thdistribution<>															
3010F6453         00         122         02           3010F6564         00         120         020         00         04           3010F6564         00         100         000         0.4         0           8010F5646         00         100         000         0.4         0         0.0         0.4           8010F572.402         10         108         130         0         130         0         0.4         0           8010F577.4032         10         0.35         0.3         0.3         130         0         130         0         0         0         0         140         0         140         0         130         0         130         0         130         0         130         0         130         0         140         0         140         0         140         0         140         0         140         0         140         0         140         0         140         0         140         0         140         0         140         0         140         0         140         140         0         140         140         140         140         140         140         140															
100         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         10000         1000         1000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
Mikeli Finiti- Biar         907092308         10         106         107         2.0           Mikeli Finiti- Biar         90709721-502         10         7.77         78         3.49           Mikeli Finiti- Biar         90707721-502         10         8.56         53         2.69           Mikeli Finiti- Biar         90707721-602         10         8.56         53         7.87           Mikeli Finiti- Biark         90707721-602         10         8.56         53         7.87           Obside Hintini- Biark         90707721-602         10         8.56         83         7.87           Obside Hintini- Biark         90707721-604         10         8.74         87         87         4.17															
A dwali Finah. Bue 80.10P2/2-0.02 10 7.77 78 3.59 44 dwali Finah. Cary 80.00/P2/14/02 10 8.35 83 7.78 5.50 44 dwali Finah. Cary 80.00/P2/15/04 10 8.35 83 7.28 5.50 85 Bluck. 80.10/P7/15/64 10 8.74 87 4.77 5.50 85 Bluck.								10.00%	0.005						
M Made Firsh - Gary 00107714602 10 8.36 9.35 7.97 7.97 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.0				5.00%	0.002								5.00%		
d Metal Finish - Back         8010P7216504         10         8.35         8.3         7.88           Gloss Black         8010P7775504         10         8.74         87         4.17				2:00%	0.002								5.00%	0.002	~
Gloss Black 8010P7779504 10 8.74 87 4.17				5.00%	0.002								5.00%	0.002	
0.0.0000000000000000000000000000000000															
IK-56 Gel Stain - Jet Manogany BurluP8/1564 10 7:50 75 4.27 0.02															
00 Exterior Flat Later - White 8010PA100 10 11.02 110 0.77 0.004						2.00%	0.001								
8010PHD6480 10 10.52 105 0.34						5.00%	0.003								
11.10 111 7.22 0.04															
340 3.045 0.0003 0.0002 0.0002 0.0005	6 0.002		0.002		0.02		0.008		0.02	0.0	0.0004	0.02	2	0.07	
290	3.25		4.93		31.50		11.64		38.55	0	0.87	47.21	1	133.24	4
Ib/yr			lb/yr		lb/yr		lb/yr		lb/yr	Ð	lb/yr	² QI		lb/yr	
273.28 Ib/v															

	Tabl	e C-4. Weig	ght Percen	t and Annu	al Emission	s of Partici	ulates fron	Table C-4. Weight Percent and Annual Emissions of Particulates from Each Paint				
	National Stock	Transfer	PM Control	Maximum Material	Material	Maximum Material	Solids				Copper	Copper
Material Used	Number (NSN)	Efficiency ¹ %	Efficiency ² %	Usage ³ (gal/yr)	Density ⁴ (Ib/gal)	Usage [°] (lb/yr)	Content ⁶ (wt. %)	PM ⁷ (tons/year)	C.I. Pigment Red 3 ^a (wt. %)	C.I. Pigment Red 3 ⁹ (tons/year)	Phthalocyanine (wt. %)	Phthalocyanine (tons/year)
Aerosol Paints/Primers												
Hard Hat Lspr - Flat Black	8010016003259	30%	%06	10	6.83	68	18.00%	0.0004				
Painters Touch Spray Paint - Deep Forest Green	8010P1919830	30%	%06	10	6.34	63	8.30%	0.00019				
Hard Hat LSPR Flat Black	8010P2178838	30%	%06	10	6.83	68	18.02%	0.0004				
Hard Hat Industrial Enamel Primer	8010P2182838	30%	%06	10	7.18	72	26.05%	0.0007				
Rustoleum Stops Rust Hammered Metal Finish - Light Blue	8010P7212830	30%	%06	10	6.26	63	4.20%	0.00009				
SS4004 Silicone Polymer	8010P7212830	30%	%06	10	6.68	67	13.00%	0.0003				
Hard Hat Lspr Gloss White	8010P7792	30%	%06	10	7.01	70	20.00%	0.0005				
Utilac High Gloss Metal And Wood Enamel	8010PUTILAC490	30%	%06	10	7.00	70	10.00%	0.0003			1.40%	0.00004
Thinners/Reducers												
Klean-Strip Xylene	6810PXY24	65%	%06	10	7.18	72	0.10%	0.000001				
Activators												
Concrete Saver WB Epoxy Activator	8010P6001604	65%	%06	10	8.70	87	65.74%	0.001				
Other												
Walk Way Type II Rough - Black	8010006410427	65%	%06	10	10.80	108	70.18%	0.001				
Rustoleum Enamel Topcoat - Safety Yellow	801000D004815	65%	%06	10	9.01	06	62.90%	0.001	10.00%	0.0002		
Behr 6730 Premium Plus Int/Ext Porch And Floor Base	8010P06730	65%	%06	10	8.35	83	90.10%	0.001				
Regal Wall Satin	8010P16782154A	65%	%06	10	12.10	121	45.00%	0.001				
DTM Acrylic Heavy Duty Primer 180-11	8010P18011	65%	%06	10	10.85	108	54.60%	0.001				
Painters Touch Topcoat - Flat Black	8010P1976730	65%	%06	10	9.86	66	83.93%	0.001				
225 Minwax Wood Finish - Red Mahogany	8010P253682	65%	%06	10	7.18	72	41.00%	0.0005				
Clear Wood Finish Interior Semigloss	8010P27X2	65%	%06	10	7.52	75	25.43%	0.0003				
3210 Minwax In/Out Helmsman Spar Urethane SG	8010P3210	65%	%06	10	7.76	78	52.00%	0.0007				
	8010P412402	65%	%06	10	9.01	06	63.00%	0.001	10.00%	0.0002		
	8010P4300	65%	%06	10	12.02	120	98.61%	0.002				
Behr 4560 Premium Plus Exterior Flat Pastel Base	8010P4560	65%	%06	10	12.00	120	96.66%	0.002				
Behr 4670 Premium Plus Exterior Flat Accent Base	8010P4670	65%	%06	10	12.00	120	96.66%	0.002				
Behr 4853 Premium Plus Ultra Exterior Flat Deep	8010P4853	65%	%06	10	12.02	120	98.61%	0.002				
Behr 5856 Premium Plus Ultra Semi Gloss Exterior Accent	8010P5856	65%	%06	10	10.00	100	94.58%	0.002				
Concrete Saver WB Epoxy	8010P6082408	65%	%06	10	10.66	107	53.00%	0.001				
Rustoleum Stops Rust Hammered Metal Finish - Blue	8010P7212-502	65%	90%	10	7.77	78	53.81%	0.0007				
Rustoleum Stops Rust Hammered Metal Finish - Gray	8010P7214502	65%	80%	10	8.35	83	5.65%	0.00008				
Rustoleum Stops Rust Hammered Metal Finish - Black	8010P7215504	65%	%06	10	8.35	83	5.60%	0.00008				
Rustoleum Stops Rust Enamel - Gloss Black	8010P7779504	65%	90%	10	8.74	87	52.24%	0.0008				
BR-56 Gel Stain - Jet Mahogany	8010P871944	65%	%06	10	7.50	75	43.10%	0.0006				
A100 Exterior Flat Latex - White	8010PA100	65%	90%	10	11.02	110	93.00%	0.002				
	8010PHD6480	65%	80%	10	10.52	105	96.77%	0.002				
Moorcraft Super Spec Latex House Paint - Flat Black	8010PVINYLATEX	65%	80%	10	11.10	111	35.00%	0.0007				
TOTAL				340		3,045		0.0316		0.0003		0.00004
Total PM HAP	0.0003582	tons/year								0.65 Ib/yr		0.07 Ib/yr
	0 72	lb/vr										

Total PM HAP	0.0003582	tons/year
	0.72	lb/yr
Total VOC and PM HAP	274.01	Ib/yr
	0.14	tons/vr

¹ Assume that all coatings except aerosols are applied with an HVLP spray gun only, which has a transfer efficiency of 65%. Atransfer efficiency of 30% was assumed for aerosol coatings.

² Paint filter control efficiencies for liquids were determined based on the manufacturer filter specifications included in Attachment I.

 $^{3}\,\mathrm{Maximum}$  material usage (gal/yr) is based on expected future use.

⁴ Material density was supplied by the paint manufacturers in the Material Safety Data Sheets (MSDS).

⁵ The following equation was used to calculate maximum material usage in pounds per year: Maximum Material Usage (Ib/yr) = Maximum Material Usage (galyr) * Material Density (Ib/gal)

⁶ The solids content was either provided in the MSDS or was calculated based on the following equation: Solids Content (w1.%) = Material Density (Ibgal) - VOC (Ibgal) / Material Density (Ibgal)

⁷ the following equation was used to cabulate maximum amual PM emissions: PM (pon/y) = Maximum Material Usage (Ibyn) *[Solids Content (wt.%) / 100] * [1-Transfer Efficiency (% / 100]] * [1-Contrid Efficiency (% / 100]] / 2,000 (Ibiton)

⁸ All constituent weight percents were supplied by the paint manufacturers in the Material Safety Data Sheets (MSDS).

^a The following equation was used to calculate maximum amual emissions for each particulate HAP: Particulate HAP (ton/y) = Maximum Material Usage (by/) * (HAP Weight Parcent / 100) * [1-Transfer Efficiency (% / 100)] * [1-Control Efficiency (% / 100)] * [1

# Permit 3129 – 58 SOW Generator at Bldg. 1017

Emission Unit ID

# Section 4.1 Potential Emission Rates (PER) or Uncontrolled Emissions (Unit ID 19031)

To calculate emissions in the table below, use the EPA Emission Factors (Given) OR Manufacturers Emission Factors in (lbs/Hp-ht) if available. Note: Choose the factors (EPA or Manufacturers) that will generate the highest Lbs/Hr and Tons/Year emission rate for EACH aircontaminant.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Potential Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		Х	8,760	÷	2,000	=	
	NOx	0.011		X		=		Χ	8,760	÷	2,000	=	
Gasoline	VOC	0.015		X		=		X	8,760	÷	2,000	=	
	SOx	0.000591		X		=		X	8,760	÷	2,000	=	
	*PM	0.000721		X		=		X	8,760	÷	2,000	=	
	CO	0.00668	0.00838	X	355	н	2.974	Χ	8,760	÷	2,000	=	13.026
Diesel	NOx	0.031	0.03549	X	355	=	12.600	X	8,760	÷	2,000	=	55.190
< 600 Hp	VOC	0.00247	0.00110	X	355	Ш	0.877	X	8,760	÷	2,000	=	3.841
<u>- 000 mp</u>	SOx	0.00205		X	355	н	0.728	Χ	8,760	÷	2,000	=	3.189
	*PM	0.0022		X	355	Ш	0.781	X	8,760	÷	2,000	=	3.421
	CO	0.0055		Х		=		Х	8,760	<u>.</u>	2,000	=	
Discol	NOx	0.024		Х		=		Х	8,760	÷	2,000	=	
Diesel > 600 Hp	**VOC	0.000705		Х		=		X	8,760	÷	2,000	=	
2 000 HP	***SOx	0.003236		X		=		X	8,760	÷	2,000	=	
	*PM	0.0007		X		=		X	8,760	÷	2,000	=	

* Particulate Matter (PM) emissions are considered to be < 1µm (micron). Therefore, PM emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as  $0.00809 \ge 0.4$  wt. % sulfur in diesel fuel = 0.003236.

# Section 5.1 Controlled Emission Rates (Requested Permitted Allowable Rates) (Unit ID 19031)

If using the same emission factors as above to calculate the Controlled Emission Rates, start the table below by transferring the Emissions in Lbs/Hour from the column above and then complete the remainder of the equation starting with the Requested Operating Hours/Year. Note: You may choose different factors for calculating Controlled Emission Rates, however the Engine must meet the Lbs/Hour rate given for each regulated air contaminant if performance testing is requested.

Engine Fuel Type	Pollutants	EPA Emission Factors (Lbs/ Hp–hour)	Manufacturers Emission Factors (Lbs/ Hp–hour)	T I M E S	Size of Engine In Horsepower	E Q U A L S	Emissions in Lbs / Hour	T I M E S	Requested Operating Hours / Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons / Year
	CO	0.439		Х		=		х		÷	2,000	=	
	NOx	0.011		Х		=		Х		÷	2,000	=	
Gasoline	VOC	0.015		Х		=		Х		÷	2,000	=	
	SOx	0.000591		Х		=		X		÷	2,000	=	
	*PM	0.000721		X		=		X		÷	2,000	=	
	CO	0.00668	0.00838	Х	355	=	2.974	Х	200	÷	2,000	=	0.297
Diesel	NOx	0.031	0.03549	Х	355	=	12.600	Х	200	÷	2,000	=	1.260
Selection 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 201	VOC	0.00247	0.00110	X	355	=	0.877	X	200	÷	2,000	=	0.088
<u>~ 000 Tip</u>	SOx	0.00205		X	355	=	0.728	X	200	÷	2,000	=	0.073
	*PM	0.0022		Х	355	=	0.781	Х	200	÷	2,000	=	0.078
	CO	0.0055		Х		=		X		÷	2,000	=	
Discol	NOx	0.024		Х		=		X		÷	2,000	=	
Diesel >600 Hp	**VOC	0.000705		X		=		X		÷	2,000	=	
>000 np	***SOx	0.003236		X		=		X		÷	2,000	=	
	*PM	0.0007		Х		=		Х		÷	2,000	=	

* Particulate Matter (PM) emissions are considered to be < 1 µm (micron). Therefore, PM emissions also reflect PM₁₀ & PM_{2.5}.

** The EPA Volatile Organic Compounds (VOC) emission factor is the AP-42 emission factor for Total Organic Compounds (TOC).

*** The EPA Sulfur Oxides (SO_x) emission factor is calculated as 0.00809 x 0.4 wt. % sulfur in diesel fuel = 0.003236.

Permit 3141 – Sustainment Facility Emergency Generator

Emission Unit ID

# Section 4. Potential Emission Rate (Uncontrolled Emissions)

Model Year	Pollutant	Emission Factors g/Hp-hr	T I M E S	Actual Engine Hp	E Q U A L S	Emission In Grams Per Hour	D I V I D E	Grams Per Pound	E Q U A L S	Emission in Pounds Per Hour	T I M E S	Potential Operating Hours Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons Per Year
	CO	2.60	х	<mark>1,490</mark>	=	<mark>3,874</mark>	÷	453.6	=	<mark>8.54</mark>	х	8,760	÷	2,000	=	<mark>37.41</mark>
	NO _x	4.70	X	<mark>1,490</mark>	=	7,003	÷	453.6	=	<mark>15.44</mark>	X	8,760	÷	2,000	=	<mark>67.62</mark>
	NMHC	0.10	X	1,490	=	<mark>149</mark>	÷	453.6	=	<mark>0.33</mark>	X	8,760	÷	2,000	=	<mark>1.44</mark>
2013	*NOx + NMHC	4.80	x	<mark>1,490</mark>	=	<mark>7152</mark>	*	453.6	=	<mark>15.77</mark>	x	8,760	÷	2,000	=	<mark>69.06</mark>
	**SO _x	<mark>0.11</mark>	X	<mark>1,490</mark>	=	<mark>163.9</mark>	÷	453.6	=	<mark>0.36</mark>	X	8,760	÷	2,000	=	<mark>1.58</mark>
	***PM	0.15	X	<mark>1,490</mark>	=	223.5	÷	453.6	=	<mark>0.49</mark>	X	8,760	÷	2,000	=	<mark>2.16</mark>

Use manufacturer's data, compliance performance stack test data or the attached USEPA Emission Factors in grams per horsepower-hour (g/Hp-hr) associated with the Engine's Horsepower Rating and Model Year

* If the USEPA Emission Factor or manufacturer's data is given as combined NOx + NMHC, also provide individual emission factors for NOx and NMHC from the manufacturer or other approved methodology for estimating individual emission factors.

** Manufacturer's SOx factor shall be used when larger than the USEPA Emission Factor.

*** Particulate Matter (PM) emissions are considered to be  $< 1\mu m$  (micron). Therefore, PM emissions also reflect PM₁₀ & PM_{2.5}.

Section 5. Potential to Emit (Requested allowable rate) (Controlled Emissions)

Transfer each pollutant Emission in Pounds Per Hour from column above to the Emission in Pounds Per Hour column below. Complete the equation after inserting the Requested Operating Hours Per Year. Pound Per Hour rate for each pollutant must be met if performance testing is requested.

			testing is i	. equ	este at				
Pollutant	Emission in Pounds Per Hour	T I M E S	Requested Operating Hours Per Year	E Q U A L S	Pounds Per Year	D I V I D E	Pounds Per Ton	E Q U A L S	Emission In Tons Per Year
СО	<mark>8.54</mark>	x	200	=	1,708.11	÷	2,000	=	<mark>0.85</mark>
NO _x	<b>15.44</b>	x	200	=	<mark>3,087.74</mark>	÷	2,000	=	<mark>1.54</mark>
NMHC	<mark>0.33</mark>	X	200	=	<mark>65.70</mark>	÷	2,000	=	<mark>0.033</mark>
*NOx + NMHC	<b>15.77</b>	X	200	=	<mark>3,153.44</mark>	÷	2,000	=	<mark>1.58</mark>
**SO _x	<mark>0.36</mark>	x	200	=	72.27	÷	2,000	=	<mark>0.036</mark>
***PM	<mark>0.49</mark>	x	200	=	<mark>98.54</mark>	÷	2,000	=	<mark>0.049</mark>

I, the undersigned, a responsible officer of the applicant company, certify that to the best of my knowledge, the information stated on this application, together with associated drawings, specifications, and other data, give a true and complete representation of the existing, modified existing, or planned new stationary source with respect to air pollution sources and control equipment. I also understand that any significant omissions, errors, or misrepresentations in these data will be cause for revocation of part or all of the resulting source registration and air quality permit.

# Note: The following shall be protected as confidential if requested (checked) by the applicant. Provide detailed nature of request as an attachment.

- Any information relating to processes or production techniques, which are unique to owner / operator
- Data relating to owner / operator profits and costs, which have not previously been made public

Print Name METHOD OF SUBMITTAL:	Sign Name	Title – 5:00pm ; Monday – Friday) to the Address a	Date
Tom D. Miller, Colonel, USAF	submitted Dec 17, 2013)	Installation Commander, Kirtland AFB	Data
	(signature on original application		

	in Grams P	in Grams Per Horsepower Hour (g/h)	ver Hour	(g/hp-hr)	for Engi	nes with a dis _l	placement of <	p-hr) for Engines with a displacement of < 10 Liters Per Cylinder	der
Horsepower / kW	Tier (CFR Section)	Year Of Manufacture	CO (g/hp-hr)	NOx ¹ (g/hp-hr)	NMHC ¹ (g/hp-hr)	NOx + NMHC ¹ (g/hp-hr)	SOx ² (g/hp-hr)	Particulate Matter (PM) (g/hp-hr)	Notes
< 11 Hp < 8 kW	1 (60.4205)	Pre 2007 ³	6.0			7.8	*£6`0	0.75	* Use AP-42 Section 3.3 SOx factors if <600Hp and Section 3.4 if >600Hp as shown on this table, or manufacturer's factors. Manufacturer's factors shall be used when larger than AP-42 factors.
	2 (60.4202) - (89.112)	2007	6.0			5.6	0.93*	0.6	
	4 (60.4202)	2008 +	6.0			5.6	*6.0	0.3	
≥ 11 Hp < 25 Hp	1 (60.4205)	Pre 2007 ³	4.9			7.1	0.93*	9.0	
	2 (60.4202) - (89.112)	2007	4.9			5.6	0.93*	0.6	
$\ge$ 8 kW < 19 kW	4 (60.4202)	2008 +	4.9			5.6	0.93*	0.3	
≥ 25 Hp < 50 Hp	1 (60.4205)	Pre 2007 ³	4.1			7.1	0.93*	9.0	
	2 (60.4202) - (89.112)	2007	4.1			5.6	0.93*	0.45	
$\ge$ 19 kW < 37 kW	4 (60.4202)	2008 +	4.1			5.6	0.93*	0.22	
≥ 50 Hp < 100 Hp	1 (60.4205)	Pre 2007 ³	3.03**	6.9	$1.12^{**}$		0.93*	$1.0^{**}$	
	2 (60.4202) - (89.112)	2007	3.7			5.6	0.93*	0.3	** Use AP-42 Section 3.3 factors for
$\ge$ 37 kW < 75 kW	3 (60.4202) - (89.112)	2008 +	3.7			3.5	0.93*	0.3	CO, NMHC, and PM as shown on this
≥ 100 Hp < 175 Hp	1 (60.4205)	Pre 2007 ³	3.03**	6.9	1.12**		0.93*	$1.0^{**}$	table, or manufacturer's factors. Manufacturer's factors shall be used
$\ge$ 75 kW < 130 kW	3 (60.4202) - (89.112)	2007 +	3.7			3.0	0.93*	0.22	when larger than AP-42 factors.
$\geq$ 175 Hp $\leq$ 750 Hp	1 (60.4205)	Pre 2007 ³	8.5	6.9	1.0		0.93* for $< 600$ Hp	0.4	
$\geq$ 130 kW $\leq$ 560 kW	3 (60.4202) - (89.112)	2007 +	2.6			3.0	or 3.67* for > 600Hp	0.15	
> 750 Hp	1 (60.4205)	Pre 2007 ³	8.5	6.9	1.0			0.4	
	<mark>2</mark> <del>3</del> (60.4202) - (89.112)	2007***	<mark>2.6</mark>			<mark>4.8</mark>	3.67	0.15	
> 560 kW		*** 2007 – 2	010 Model Y	ear Engines > vear. Er	<ul> <li>3,000 Hp shi ngines &gt; 3,00</li> </ul>	gines > 3,000 Hp shall meet the Pre 2007 standards and sear. Engines > 3,000 Hp shall meet the 2007 standards	7 standards and beginn 2007 standards	*** 2007 – 2010 Model Y ear Engines > 3,000 Hp shall meet the Pre 2007 standards and beginning with the 2011 model vear. Engines > 3,000 Hp shall meet the 2007 standards	
					( -				

Federal New Source Performance Standards (NSPS) for Stationary EMERGENCY Diesel Engines (40CFR 60.4202 & 60.4205)

¹ When an emission factor is given for combined NOx + NMHC, individual emission factors for NOx and NMHC must be obtained from the manufacturer. ² SOx emission factors shall be based on AP-42 Section 3.3 for engines less than (<) 600 Hp and Section 3.4 for engines greater than (>) 600 Hp, or manufacturer's factors since SOx emission standards were not established for non-road diesel engine rulemaking. Manufacturer's factors shall be used when larger than the AP-42 factors. For engines > 600 Hp, the "S" multiplier is 0.05 (5%) if calculating SOx to reflect the current low sulfur diesel fuel standard of 500 ppm. Percent sulfur in diesel fuel transitions to Ultra Low Sulfur Diesel (15 ppm) by October 2010. For engines operated after October 2010, with a year of manufacture of 2010 or later, the "S" multiplier is 0.0015 (0.15%) if calculating SOx to reflect the proposed new standard.

³ Pre 2007 means each stationary Compression Ignition Internal Combustion Engine (CI ICE) whose construction, modification or reconstruction commenced after July 11, 2005. The date of construction is the date the engine is ordered by the owner or operator. Stationary CI ICE manufactured prior to April 1, 2006, that are not fire pump engines are not subject to NSPS, unless the engines are modified or reconstructed after July 11, 2005. A modified or reconstructed CI ICE must meet the emission standards for the model year in which the engine was originally new, not the year the engine is modified or reconstructed (Preamble language – Section II. E).

Permit 3331 – PL 567 SVE System

Emission Unit ID

# **AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet** L-567 SVE System (Unit ID 12010) ThermAIR TA040

NOx CO low rate (Q) _{air}	0.171	0.747	
	0.076		
low rate (Q) _{air}		0.333	
low rate (Q) _{air}		- 3	
	250	ft ³ /min	
NOx Concentration (C) _{air}	85	ppm	110 ppm
CO Concentration (C) $_{air}^{2}$	49	ppm	
Emission Calculation M	ethodology		
NOx			
M _{air}	$= C_{air} \times Q_{air} \times 0.$	0283 (m ³ /ft ³ ) ×	2.2 (lb/mg) × 60 (min/hr) × 10 ⁻⁶
M _{air}	= 141 (mg/m ³ ) x	250 (ft ³ /min) x	0.0283 (m³/ft³)× 2.2 (lb/mg) × 60 (min/hr) × 10 ⁻⁶
0			
M _{air}	$= C_{air} \times Q_{air} \times 0.$	0283 (m ³ /ft ³ ) ×	2.2 (lb/mg) × 60 (min/hr) × 10 ⁻⁶
M _{air}	= 141 (mg/m ³ ) x	250 (ft ³ /min) x	0.0283 (m³/ft³)× 2.2 (lb/mg) × 60 (min/hr) × 10 ⁻⁶
Vhere:			
M) _{air} =	Mass loading	rate (lb/hr)	
Q) _{air} =	Flow rate in st	andard ft ³ /min	
C) _{air} =	NOx concentra	ation (mg/m ³ )	or CO concentration (mg/m ³ )
Convert concentration of NO	x from ppm to mg	′m ³	
(C) _{air}	= (110 ppm /10	⁶ ) x (1 mole/ 24	.1L) x (1000 L/m³) x (1000 mg/g) x MWgas (grams/mole)
	(110 ppm /10	³ ) x (1 mole/ 24	.1L) x (1000 L/m ³ ) x (1000 mg/g) x (40.03 grams/mole)
(C) _{air}	= 183	, , ,	
Convert concentration of NO	x from ppm to mg	′m ³	
(C) _{air}	= (49 ppm /10 ⁶ )	x (1 mole/ 24.1	L) x (1000 L/m ³ ) x (1000 mg/g) x MWgas (grams/mole)
			L) x (1000 L/m ³ ) x (1000 mg/g) x (28.01 grams/mole)
(C) _{air}			

 $^{\rm 1.}$  Due to operating temperatures being higher than 1400 F, NOx emissions were raised approximately 30%.

 $^{\rm 2.}\,$  Due to operating temperatures being higher than 1400 F CO emissions were estimated to be below 50ppm hence 49 ppm was used for conservative measures.

# AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Site 58 PL-567 SVE System (Unit ID 12010) ThermAIR TA040

### Estimated Emissions

Compound	Maximum Removal Concentration (ppm)	Maximum Hourly Rate (lb/hr)	Maximum Annual Rate (ton/yr)	Controlled Hourly Rate (lb/hr)	Controlled Annual Rate (lb/yr)	Controlled Annual Rate (ton/yr)
VOC	7000	28.48	124.75	0.28	2495.02	1.25

### **Estimated Gasoline Removal Rate**

Vapor flow rate (Q) _{air}	250 ft ³ /min
Vapor Concentration (C) _{air}	7000 ppm

# **Emission Calculation Methodology**

 $\begin{array}{ll} M_{air} = & C_{air} \times Q_{air} \times 0.0283 \ (m^3/ft^3) \times 2.2 \ (lb/mg) \times 60 \ (min/hr) \times 10^{-6} \\ M_{air} = & 30498 \ (mg/m^3) \times 250 \ (ft^3/min) \ \times 0.0283 \ (m^3/ft^3) \times 2.2 \ (lb/mg) \times 60 \ (min/hr) \times 10^{-6} \\ \end{array} \\ \begin{array}{ll} W_{here:} \\ (M)_{air} = & & \\ (M)_{air} = & & \\ (Q)_{air} = & & \\ (C)_{air} = & & \\ \end{array} \\ \begin{array}{ll} Gasoline \ vapor \ concentration \ (mg/m^3) \end{array}$ 

## Convert concentration of gasoline from ppm to mg/m³

(C)_{air} = (7000 ppm /10⁶) x (1 mole/ 24.1L) x (1000 L/m³) x (1000 mg/g) x MWgas (grams/mole) (7000 ppm /10⁶) x (1 mole/ 24.1L) x (1000 L/m³) x (1000 mg/g) x (105 grams/mole) (C)_{air} = 30498

Thermox Control System rated with minimum destruction efficiency of Controlled emission rates = Maximum emission rate x control efficiency 99%

Permit 3329 – ST-070E SVE System

Emission Unit ID

# AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Site 070CE SVE System (Unit ID 12009)

# **Estimated Emissions**

Compound	Maximum Removal Concentration (ppm) ¹⁾	Maximum Hourly Rate (Ib/hr)	Maximum Annual Rate (ton/yr)	Controlled Hourly Rate (lb/hr)	Controlled Annual Rate (ton/yr)
VOC	400	2.49	10.90	1.24	5.45

# Estimated Gasoline Removal Rate

Vapor flow rate (Q) _{air}	365 ft ³ /min
Vapor Concentration (C) _{air}	400 ppm

# **Emission Calculation Methodology**

$M_{air} = C_{air} \times Q_{air} \times 0.0283 \text{ (m}^3/\text{ft}^3) \times 2.2 \text{ (lb/mg)} \times 60 \text{ (min/hr)} \times 10^{-6}$
$M_{air}$ = 1826 (mg/m ³ ) x 250 (ft ³ /min) x 0.0283 (m ³ /ft ³ )× 2.2 (lb/mg) × 60 (min/hr) × 10 ⁻⁶

Where:

(M) _{air} =	Mass loading rate (lb/hr)
(Q) _{air} =	Flow rate in standard ft ³ /min
(C) _{air} =	Gasoline vapor concentration (mg/m ³ )

Convert concentration of gasoline from ppm to  $mg/m^3$ 

Granulated Activated Carbon Unit rated with minimum control efficiency of Controlled emission rates = Maximum emission rate x control efficiency 50%

### AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Site 070CE SVE System (Unit ID 12009)

HAP Emission Estimate								
Analyte	Concentration ¹	Concentration ^{1. (ppmv)}	Molecular Weight (g/mol)	Maximum Hourly Rate (lb/hr)	Maximum Annual Rate (ton/yr)	Controlled Hourly Rate (lb/hr)	Controlled Annual Rate (ton/yr)	Controlled Annual Rate (lbs/yr)
Benzene	59	0.059	78.11	0.0003	0.0011	0.0001	0.0006	1.1
Bromoform	190	0.19	252.73	0.0027	0.0119	0.0014	0.0059	11.9
Bromomethane	290	0.29	108.97	0.0018	0.0078	0.0009	0.0039	7.8
2-Butanone (MEK)	150	0.15	72.11	0.0006	0.0027	0.0003	0.0013	2.6
Carbon tetrachloride	230	0.23	153.82	0.0020	0.0088	0.0010	0.0044	8.7
Chlorobenzene	85	0.085	112.56	0.0005	0.0024	0.0003	0.0012	2.3
Chloroethane	200	0.2	64.51	0.0007	0.0032	0.0004	0.0016	3.2
Chloroform	54	0.054	119.38	0.0004	0.0016	0.0002	0.0008	1.6
Chloromethane	77	0.077	50.49	0.0002	0.0010	0.0001	0.0005	0.9
1,4-Dichlorobenzene	220	0.22	147.00	0.0018	0.0080	0.0009	0.0040	8.0
1,2-Dichloroethane	75	0.075	98.96	0.0004	0.0018	0.0002	0.0009	1.8
1,1-Dichloroethane	75	0.075	98.96	0.0004	0.0018	0.0002	0.0009	1.8
1,1-Dichloroethene	56	0.056	96.94	0.0003	0.0013	0.0002	0.0007	1.3
1,2-Dichloropropane	340	0.34	115.96	0.0022	0.0098	0.0011	0.0049	9.7
trans-1,3-Dichloropropene	84	0.084	110.97	0.0005	0.0023	0.0003	0.0012	2.3
Ethylbenzene	81	0.081	106.17	0.0005	0.0021	0.0002	0.0011	2.1
Methylene Chloride	64	0.064	84.93	0.0003	0.0013	0.0002	0.0007	1.3
4-Methyl-2-pentanone (MIBK)	150	0.15	100.16	0.0009	0.0037	0.0004	0.0019	3.7
Styrene	79	0.079	104.15	0.0005	0.0020	0.0002	0.0010	2.0
1,1,2,2-Tetrachloroethane	130	0.13	167.85	0.0012	0.0054	0.0006	0.0027	5.4
Tetrachloroethylene	320	0.32	165.83	0.0030	0.0131	0.0015	0.0066	13.1
Toluene	70	0.07	92.14	0.0004	0.0016	0.0002	0.0008	1.6
1,1,1-Trichloroethane	100	0.1	133.40	0.0008	0.0033	0.0004	0.0017	3.3
1,1,2-Trichloroethane	100	0.1	133.40	0.0008	0.0033	0.0004	0.0017	3.3
Trichloroethylene	1600	1.6	131.40	0.0119	0.0521	0.0059	0.0260	52.1
Vinyl chloride	95	0.095	62.50	0.0003	0.0015	0.0002	0.0007	1.4
Kylenes, Total	240	0.24	106.16	0.0014	0.0063	0.0007	0.0032	6.3
				Total	0.16	0.018	0.081	161.4

 $^{\rm 1}$  Concentrations of HAPs were obtained from samples collected duirng 2018 system operations.

### Emission Calculation Methodology

M_{air} = M_{air} = 
$$\begin{split} C_{air} \times Q_{air} \times 0.0283 \; (m^3/ft^3) \times 2.2 \; (lb/mg) \times 60 \; (min/hr) \times 10^{-6} \\ 1826 \; (mg/m^3) \times 250 \; (ft^3/min) \; \times 0.0283 \; (m^3/ft^3) \times 2.2 \; (lb/mg) \times 60 \; (min/hr) \times 10^{-6} \end{split}$$

Where:
(M) _{air} =
(Q) _{air} =
Vapor flow rate (Q) _{air =}
(C) _{air} =

Mass loading rate (lb/hr) Flow rate in standard ft³/min 365 ft3/min (operational data) HAP (mg/m³)

Convert concentration of HAPs from ppm to mg/m  3  (C)_{air} =

(400 ppm /10⁶) x (1 mole/ 24.1L) x (1000 L/m³) x (1000 mg/g) x MW (grams/mole) (400 ppm /10⁶) x (1 mole/ 24.1L) x (1000 L/m³) x (1000 mg/g) x HAP(MW)(grams/mole)

50%

Granulated Activated Carbon Unit rated with minimum collection efficiency of					
	1 - 0.98 =0.02				
Controlled emission rates =	Maximum emission rate x 0.02				

Permit 3308 – DISA Antenna Tower

Emission Unit ID

# AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Emergency Generator at DISA Antenna Tower Generator Shelter (Unit ID 19179)

Criteria Air Pollutants	Emission Rate (Ib/hr)	Controlled Annual Emissions ¹ (ton/yr)	Uncontrolled Potential Annual Emissions ² (ton/yr)
Carbon Monoxide	0.61	0.061	2.68
Nitrogen Oxides	0.37	0.04	1.62
Particulate Matter	0.004	0.0004	0.02
Particulate Matter <10µm	0.004	0.0004	0.02
Particulate Matter <2.5µm	0.004	0.0004	0.02
Sulfur Oxides	0.15	0.02	0.67
Volatile Organic Compounds	0.18	0.02	0.80
NMHC	0.004	0.0004	0.02
NO _x + NMHC	0.57	0.06	2.51

¹ Controlled annual emissions are calculated assuming a maximum of 200 operating hours per year.

² Uncontrolled potential annual emissions are calculated assuming unlimited operation for 8760 hours per year.

# AP-42 Emission Factors Criteria Pollutant Emission Estimation Spreadsheet Emergency Generator at DISA Antenna Tower Generator Shelter (Unit ID 19179)

# 74.3 hp engine 48 kW generator

	EPA AP-42	P-42	EPA Tier 4	ier 4	Manuf Stat	Manufacturer's Statement		Values	Values for Permit Application Forms	tion Forms			
Criteria Air Pollutants	Emission Factor ¹	Factor ¹	Emission Limit	n Limit ²	Emissie	Emission Factor ³	Emission Factor	Hourly	Hourly Emissions	Annual Emissions ⁷	issions ⁷	PTE ⁸	Emission Factor Reference
	(Ib/hp-hr)	(lb/hp-hr) (g/hp-hr)	g/kWh	g/hp-hr	g/kWh	g/hp-hr	(g/hp-hr)	g/hr	lb/hr	lb/yr	ton/yr	ton/yr	
Carbon Monoxide	6.68E-03	3.03	ъ	3.7	0.31	0.23	3.73	277.0	0.61	122.15	0.06	2.68	EPA Tier 4
Nitrogen Oxides	0.031	14.06	ı	1	3.02	2.25	2.25	167.3	0.37	73.78	0.04	1.62	Manufacturer's Statement
Particulate Matter ⁴	2.20E-03	1.00	0.03	0.02	0.02	0.01	0.02	1.66	0.004	0.73	0.00	0.02	Manufacturer's Statement
Sulfur Oxides ⁵	2.05E-03	0.93					0.93	60.69	0.15	30.46	0.02	0.67	EPA AP-42
Volatile Organic Compounds ⁶	2.47E-03	1.12			,		1.12	83.25	0.18	36.70	0.02	0.80	EPA AP-42
NMHC	Not of N	140	ı	,	0.03	0.02	0.02	1.66	0.004	0.73	0.00	0.02	Manufacturer's Statement
NO _x + NMHC	NOT AVAIIADIE	llable	4.7	3.5		1	3.50	260.1	0.57	114.66	0.06	2.51	EPA Tier 4

The generator operates a maximum of 200 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996), for generators less than 600 hp. AP-42 Volatile Organic Compounds (TOC).

.

² EPA Tier 4 Nonroad Compression-Ignition Engines: Emission Standards Nitrogen and NMHC estimated based on Tier 4 Standards:  3  Manufacturer's statement that contained Exhaust Emission Data with values in g/kWh

⁴ Particulate matter emissions are considered to be < 1 µm in size. Therefore PM emissions also reflect particulate matter less than 10 µm (PM 10) and particulate matter less than 2.5 µm (PM 2.6).

⁵ SOX emission factor is the maximum value of the manufacturer emission factor and the EPA AP-42 emission factor, as specified by the AEHD NSPS generator application form.

 $^{\rm 6}$  Volatile Organic Compounds not provided in the manufacturer emission data.

⁷ The following equation was used to calculate annual emissions for each pollutant. Annual emissions (Ib/yr) = Hourly emissions (Ib/hr) * 200 (hrs/yr) Annual emissions (ton/yr) = Hourly emissions (Ib/hr) * 200 (hrs/yr) / 2000 (Ib/lon) ⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (Ib/hn) * 8760 (Ins/yr) / 2000 (Ib/ton)

# Permit 3366 – AFOTEC Bivouac Area 3

Emission Unit ID

## **AP-42 Emission Factors, Calculated Fuel Flow Emission Calculation Spreadsheet** AFOTEC Building 20130 **Bivuoac 3 Area**

### Generator 86.5 hp

AP-42 Hourly Annual Fuel Use² Heating Value (HV)³ PTE⁶ Emissions⁴ **Emissions**⁵ **Criteria Air Pollutants** Emission Factors¹ (gal/hr) (Btu/gal) (ton/yr) (lb/MMBtu) (ton/yr) (lb/hr) Carbon Monoxide 4.4 137000 2.52 0.95 0.58 0.14 Nitrogen Oxides 4.41 4.4 137000 2.67 0.67 11.70 Particulate Matter⁷ 0.31 137000 0.19 0.05 0.82 4.4 Particulate Matter <10µm 0.31 4.4 137000 0.19 0.05 0.82 Particulate Matter <2.5μm⁸ 0.31 137000 0.19 0.05 0.82 4.4 Sulfur Oxides 0.29 4.4 137000 0.18 0.04 0.77 Volatile Organic Compounds⁹ 0.35 137000 0.21 0.053 0.93 44

The generator operates 500 hours per year and is powered by diesel fuel.

¹ Emission factors from EPA AP-42 Section 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 (October 1996)

² The following equation was used to calculate hourly fuel use: Hourly fuel use = hp * Brake specific fuel consumption (7000 Btu/hp-hr) * 1/HV (Btu/gal)

³ The heating value (HV) of diesel fuel is given in AP-42 Section 3.3 (October 1996), Table 3.3-1(footnote c) as 19300 Btu/lb. The HV was converted into units of Btu/gal using the following equation: Heating Value (HV) (Btu/gal) = HV (Btu/lb) * Density of diesel fuel (lb/gal) The density of diesel fuel is 7.1 lb/gal (Emission Factor Documentation for Section 3.3, Gasoline and Diesel Industrial Engines (April 1993)). Heating Value (HV) (Btu/gal) = 19300 (Btu/lb) * 7.1 (lb/gal) = 137000 Btu/gal (rounded to the nearest 100)

⁴ The following equation was used to calculate hourly emissions for each pollutant: Hourly emissions (lb/hr) = EF (lb/MM Btu) * fuel use (gal/hr) * HV (Btu/gal) / 1000000 where: FF = Emission Factor HV = Heating Value

⁵ The following equation was used to calculate annual emissons for each pollutant: Annual emissions (ton/yr) = Hourly emissions (lb/hr) * 500 (hrs/yr) / 2000 (lb/ton)

⁶ Potential to Emit (PTE) was calculated based on the number of hours in a year (8760 hours per year). The following equation was used to calculate PTE: PTE (ton/yr) = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

⁷ No emission factor data for Particulate Matter (PM) is included in AP-42, assumed PM emission factors are equal to Particulate Matter <10 µm.

 8  Assumed Particulate Matter <2.5  $\mu m$  equals Particulate Matter <10  $\mu m.$ 

⁹ Volatile Organic Compounds assumed to be the exhaust portion of Total Organic Compounds (TOC).

# **Emission Estimates for Kirtland AFB Greenhouse Gas**

All Emission Unit IDs with Permitted Emission Limits

		1		Maximum			PTE CH4	PTE N2O	PTE CO2
	Unit ID	Fuel Type	Emission Unit Size (Hp)	Maximum Permitted	Fuel Use (gal or MMScf)	PTE CO2 Emissions	Emissions	Emissions	Emissior
			312e (Hp)	Hours	01 101101301)	(lbs)	(lbs)	(lbs)	(tons)
Test Cell ²	20002	Jet Fuel	1100	235	12985.1	279102	11.6	2.3	140.0
	20004	Jet Fuel	2000	350	13478.9	289717	12.0	2.4	145.4
Test Cell Subtotals:						568819	24	5	285
Internal Combustion ³	18001	Diesel	425	500	10779.0	242539	9.8	2.0	121.7
	19003	Diesel	135	200	1369.6	30817	1.3	0.3	15.5
	19006 19014	Diesel Diesel	102 775	200	1034.8 7862.3	23284 176910	0.9	0.2	11.7 88.8
	19014	Diesel	102	200	1034.8	23284	0.9	0.2	11.7
	19016	Diesel	40	200	405.8	9131	0.4	0.2	4.6
	19019	Diesel	102	200	1034.8	23284	0.9	0.2	11.7
	19031	Diesel	355	200	3601.4	81036	3.3	0.7	40.7
	19032	Diesel	465	200	4717.4	106146	4.3	0.9	53.3
	19069	Diesel	340	200	3449.3	77612	3.1	0.6	38.9
	19074	Diesel	340	200	3449.3	77612	3.1	0.6	38.9
	19076	Diesel	340	200	3449.3	77612	3.1	0.6	38.9
	19089	Diesel	335	200	3398.6	76471	3.1	0.6	38.4
	19091	Diesel	750	200	7608.7	171204	6.9	1.4	85.9
	19093 19096	Diesel Diesel	660 568	200	6695.7 5762.3	150659 129658	6.1 5.3	1.2 1.1	75.6 65.1
	19090	Diesel	660	200	6695.7	150659	6.1	1.1	75.6
	19106	Diesel	166	200	1684.1	37893	1.5	0.3	19.0
	19129	Diesel	207	200	2100.0	47252	1.9	0.4	23.7
	19130	Diesel	1186	200	12031.9	270730	11.0	2.2	135.8
	19131	Diesel	170	200	1724.6	38806	1.6	0.3	19.5
	19132	Diesel	277	200	2810.1	63231	2.6	0.5	31.7
	19133	Diesel	755	200	7659.4	172345	7.0	1.4	86.5
	19134	Diesel	435	200	4413.0	99298	4.0	0.8	49.8
	19135	Natural Gas	1334	200	1.8	218298	4.1	0.4	109.3
	19142 19143	Diesel Diesel	102 50	200 200	1034.8 507.2	23284 11414	0.9	0.2	11.7 5.7
	19143	Diesel	755	200	7659.4	172345	7.0	1.4	86.5
	19148	Diesel	535	200	5427.5	122125	5.0	1.4	61.3
	19151	Diesel	99	500	2510.9	56497	2.3	0.5	28.3
	19153	Diesel	755	200	7659.4	172345	7.0	1.4	86.5
	19154	Diesel	65.6	200	665.5	14975	0.6	0.1	7.5
	19155	Diesel	752	200	7629.0	171660	7.0	1.4	86.1
	19156	Diesel	752	200	7629.0	171660	7.0	1.4	86.1
	19157	Diesel	752	200	7629.0	171660	7.0	1.4	86.1
	19158	Diesel	752	200	7629.0	171660	7.0	1.4	86.1
	19159 19160	Diesel Diesel	762 94.5	2500 200	96630.4 958.7	2174287 21571.7	88.2 0.875	17.6 0.175	1090.9 10.8
	19161	Diesel	348	200	3530.4	79438.5	3.222	0.175	39.9
	19163	Diesel	399	200	4047.8	91080.4	3.694	0.739	45.7
	19164	Diesel	250	200	2536.2	57068	2.3	0.5	28.6
	19168	Diesel	25	200	253.6	5707	0.2	0.0	2.9
	19169	Diesel	1490	200	15115.9	340125	13.8	2.8	170.6
	19170	Diesel	755	200	7659.4	172345	7.0	1.4	86.5
	19171	Diesel	755	200	7659.4	172345	7.0	1.4	86.5
	19172	Diesel	755	200	7659.4	172345	7.0	1.4	86.5
	19173	Diesel	755	200	7659.4	172345	7.0	1.4	86.5
	19174	Diesel	1220 755	200	12376.8 7659.4	278491 172345	11.3 7.0	2.3	139.7 86.5
	19176 19177	Diesel Diesel	755	200	7659.4	172345	7.0	1.4 1.4	86.5
	19177	Diesel	1220	200	12376.8	278491	11.3	2.3	139.7
	19179	Diesel	74.3	200	753.8	16961	0.7	0.1	8.5
	19181	Diesel	176	200	1785.5	40176	1.6	0.3	20.2
	19182	Diesel	176	200	1785.5	40176	1.6	0.3	20.2
	19183	Diesel	86.5	500	2193.8	49364	2.0	0.4	24.8
ICOM Subtotals:						8,342,405	334	66	4,185
	14014	Nat Gas	6.25	8760.0	53.3	6399570	120.7	12.1	3203.
	14166	Nat Gas	5.25	8760.0	• 44.7	5375639	101.4	10.1	2687.
External Combustion ⁴	14167	Nat Gas	5.25	8760.0	44.7	5375639	101.4	10.1	2687.

¹ The Title V Permitted Units include those units that have construction permits with permitted emission limits, those units that do not have permitted emissions listed in their respective permit, emergency permit or source registration are not included.

² Jet engine test cell fuel use rates are based on the fuel flow (Construction permit application for Permit 484-M2-RV3, pg. 61 Table 6-1 Fuel Flow Rate Table) and test patterns (Construction permit application ³ For permitted diesel-fired and natural gas-fired internal combustion engines, potential fuel use is estimated based either on operating hours limits or fuel use limits estabilished in issued air permits. For all hour use estimations, a BSFC of 7,000 BTU/hp-hr was assumed, per AP-42.

⁴ For external combustion units, potential fuel use is based on 8,760 operating hours.

Example jet engine test cell calculation: Potential Operating Time (hr) x Operating Mode (%) x Fuel Consumption Factor (lb/hr) ÷ Fuel Density (lb/gal) x Emission Factor (lb/gal) = Emissions (lb)

Example internal combustion engine calculation: Potential Operating time (hr) x BSFC (BTU/hp-hr) x Power of unit (hp) + Heat Co ntent of Fuel (BTU/gal) x Emission Factor (lb/gal) = Emissions (lb) Example soil vapor extraction calculation: [Potential Operating Time (hr) x BSFC (BTU/hp-hr) x Power of Unit (hp) ÷ Heat Content of Fuel (BTU/gal) x Emission Factor (lb/gal)] + [CO Emission Rate (lb/hr) x Potential Operating Time (hr) + (1 - Control Efficiency) x Control Efficiency x (Molecular Weight of CO 2 + Molecular Weight of CO)] = Emissions (lb)

Example external combustion calculation: Potential Operating Time (hr) x Maximum Heat Input (MMBtu/hr) x Emission Factor (lb/ MMBtu) = Emissions (lb)

	E	mission Factor	S	
	Heat Content	CO ₂	CH ₄	N ₂ O
Nat Gas	1028	117	0.002	0.0002
Diesel	138000	163	0.007	0.0013
JP-8	135000	159	0.007	0.0013
Propane	91000	135	0.007	0.0013
Gasoline	125000	155	0.007	0.0013

^a Heat content and CO₂ emission factors are from Table D-2 of the Federal Greenhouse Gas Accounting and Reporting Guidance, Technical Support Document, October 2010.

 $^{\rm b}$  CH_4 and  $N_2O$  emission factors are from Table D-3 of the Federal Greenhouse Gas Accounting and Reporting Guidance, Technical Support Document, October 2010.

Global Warm	ning Potential
Multipliers for the conversion to	o CO ₂ Equivalent (CO ₂ e) ^c
Pollutant	Multiplier
CO ₂	1
CH ₄	21
N ₂ O	310

 $^{\rm c}$  CO₂ Equivalent multiplier values are from Table A-5 of the AFMC Interim Greenhouse Gas Inventory Guideance, AFCEE, February 2009.

Title V Source Emissions Summary

Source Category         Unit as 300, 7000         Go         No.         No.         No.         No.         No.         No.         No.           Internal Controlson Controls 19305         647         52.8         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021	
Arcyst Europe Testing, Unit D 192002, 2004         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th=""> <thd< th="">         D         D</thd<></thd<>	tes
SB 300* Table - Formit 4 46-M1         0.84         0.69         0.09         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01	
SQB 176. Lar Permit # 1379-M1 (197)         0.4         0.7         0.0         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7	
Link Lib as 1325, 19156, 19157, 19159, 0.424         0.724         0.725         0.019         0.213         0.725         0.019         0.213         0.725         0.019         0.019         0.213         0.725         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.01         0.019         0.019         0.019         0.019         0.019         0.019         0.01         0.019         0.019         0.01         0.019         0.01         0.019         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01	
0.42         0.722         0.019         0.019         0.213         0.723         0.195         0.723         0.195         0.723         0.195         0.723         0.195         0.723         0.195         0.723         0.195         0.725         0.195         0.725         0.195         0.725         0.195         0.725         0.195         0.725         0.195         0.725         0.195         0.725         0.195         0.725         0.195         0.725         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195         0.195	C + NOV of 0 722 toy
0.42         0.72         0.03         0.01         0.23         0.73         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15 <td< td=""><td></td></td<>	
Sardias Control Testily - Primit # 170-RV3) Sardias Control Testily - Primit # 170-RV3 Netternal Controlation - Verit (D # 1917), 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917, 1917	
Sign SDW consults Control Failing - Permit # 1726-1921         0.4         0.14         0.14         0.14         0.14         0.14           (Bailding deg 2 - Permit # 3777-402)         0.41         0.80         0.02         0.02         0.02         0.02         0.01         0.14         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97	C + NOX of 0.723 tpy
Internal Combustion - Unit ID # 13/20, 1912/1, 1912/2, 1912/3         0.45         0.80         0.02         0.02         0.031         0.14         1912/1 Combined MMIC + NOX - 0.43           Bidlidig d02 - Permit # 1777-M22)         0.44         0.86         0.02         0.02         0.031         0.14         13912         Combined MMIC + NOX - 0.43         184           Internal Combustion -         0.43         1.86         0.05         0.01         0.14         13912         Combined MMIC + NOX - 0.43         184           Water Run - Permit # 1786-M5)         0.34         1.86         0.05         0.05         0.01         0.05         13913         13913           0.24         1.22         0.03         0.06         0.06         0.1         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13913         13914         13914         13914         13914         13914         13914         13914	
Building 402 - Permit # 1777-R02)         0.43         0.80         0.02         0.02         0.031         0.41         1917 (ambied MMIC + NOX of 1917)           Interal Combustion - (Water Paint - Permit # 3786-MS)         0.48         0.80         0.02         0.021         0.031         0.14         1917 (ambied MMIC + NOX of 1917)           (Water Paint - Permit # 3786-MS)         0.43         1.88         0.50         0.60         0.60         1.91 (ambied MMIC + NOX of 0.20)         1.91 (ambied MMIC + NOX of 0.20) <td>$^{\circ}$ + NOX of 0.80 toy</td>	$^{\circ}$ + NOX of 0.80 toy
0.63         0.85         0.02         0.02         0.03         0.14         1927 Combined MMC + NOX of NOX 0000           internal Combustion - Mark Plant – Permit # 1286-MD)         0.38         0.48         0.46         0.31         0.35         0.14         1937 Combined MMC + NOX of NOX 0000           (Water Plant – Permit # 1286-MD)         0.38         0.48         0.74         0.03         0.03         0.000         0.79         1933 Combined MMC + NOX of NOX 0000           0.48         0.71         0.03         0.03         0.000         0.08         0.1         1934 Combined MMC + NOX of NOX 0000           0.13         0.53         0.04         0.05         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06 <td></td>	
Internal Combustion (Water Plant - Permit # 3786-MS)         0.49 0.49 0.43         1.86 0.79 0.43         0.06 0.13         0.13 0.13         0.13 0.12         0.45 0.43         19147           Water Plant - Permit # 3786-MS)         0.34         0.37         0.33         0.006         0.79         19147           0.42         1.81         0.05         0.13         0.13         0.05         19383           0.11         0.35         0.06         0.06         0.07         19333           0.13         0.34         0.07         0.13         0.00         0.01         19333           0.13         0.06         0.06         0.06         0.07         19333         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933         1933 <td< td=""><td>17</td></td<>	17
(Water Plant - Permit # 1786-M5)         0.3         0.3         0.3         0.3         0.3         0.4         1918           (Water Plant - Permit # 1786-M5)         0.3         0.3         0.03         0.00         0.07         1915         Commissioned MMIC + NOX of 1913           (Water Plant - Permit # 1786-M5)         0.4         18.8         0.00         0.05         0.00         0.05         1913           (Water Plant - Permit # 1786-M5)         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6 </td <td>2 + NOX of 0.80 tpy</td>	2 + NOX of 0.80 tpy
0.43         0.79         0.03         0.000         0.79         1913         Combined MMIC - NOX of 0.05         1908         0.05         1908         1908         1908         1908         1908         1908         1908         1908         1908         1908         1908         1908         1908         1908         1908         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1913         1914         1914         1914         1914         1914         1914         1914         1914         1914         1914         1914         1914         1914         1914         <	
0.76         1.21         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05 <td< td=""><td>C + NOX of 0 70 tov</td></td<>	C + NOX of 0 70 tov
0.42         1.81         0.05         0.05         0.06         0.06         0.06         0.06         0.07         1933           0.19         0.86         0.06         0.06         0.07         1933         1973         Combined MME * NOX           0.77         1.33         0.04         0.04         0.03         1.300         1973         Combined MME * NOX           0.1         0.093         0.06         0.06         0.06         0.02         1981         Combined MME * NOX           0.10         0.093         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06	, + NOX 01 0.79 tpy
0.19         0.26         0.06         0.06         0.07         19122           0.29         0.13         0.04         0.04         0.03         1.300         19174         0.01144444         19174         0.0114444         19174         0.011444         19174         0.011444         19174         0.011444         19174         0.011444         19174         0.011444         19174         0.011444         19174         0.011444         19174         0.011444         19174         0.011444         19174         0.011444         19174         0.011444         19174         19174         19174         0.01144         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174         19174	
0.29         1.35         0.1         0.1         0.11         1914           0.7         1.33         0.04         0.06         0.03         1.300         19174         Combined NMHC + NOX C           0.11         0.092         0.06         0.06         0.06         0.00         19178         Combined NMHC + NOX C           11sterral Combustion - Unit ID if 19151         0.16         0.35         0.05         0.06         0.06         0.00         19182         Combined NMHC + NOX C           Binking 1037 - Pernit # 1945)         0.16         0.35         0.05         0.06         0.06         0.06         0.06         10.9         19182         Combined NMHC + NOX C           Binking 1037 - Pernit # 1945)         0.16         0.35         0.05         0.06         0.06         10.9         1209         Application 329 ST-OPC           Bineral Combustion - Unit ID # 12010         0.2         0.20         0.005         0.02         0.1         1201         Application 3329 ST-OPC           Internal Combustion - Unit ID # 19150         0.1         0.1         0.01         0.01         0.02         0.1         12010         Application 329 ST-OPC           Internal Combustion - Unit ID # 19150         0.1         0.1         0.00<	
0.7         1.33         0.04         0.04         1.300         191/4 Combined NMHC + NOX O           0.11         0.093         0.06         0.06         0.002         19181 Combined NMHC + NOX O           Internal Combustion - Unit D # 19153.         0.05         0.05         0.05         0.05         0.05         0.05           Remediation - Unit D # 19153.         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05	
0.7         1.3         0.04         0.04         1.300         1300         1301         1301           0.10         0.092         0.06         0.06         0.04         0.002         1912         Combined NMHC + NOX C           (Bailding 137 - Permit # 345).         0.15         0.35         0.05         0.06         0.06         0.06         1912         Combined NMHC + NOX C           (Baild Fuel Sacilly - Emergency Permit # 3323         0.15         0.15         0.05         0.06         0.06         10.9         1200         Application 322 5 T-07CE           (Baild Fuel Sacilly - Emergency Permit # 3331         0.33         0.75         -         1.25         12010 Application 332 P L-567 f           (Baild Fuel Sacilly - Emergency Permit # 3331         0.33         0.75         -         1.25         12010 Application 332 P L-567 f           (Baild Fuel Sacilly - Permit # 2055         0.1         0.1         0.01         0.07         0.22         19140 Combined NMHC + NOX c           (AFRL Bailding 570 - Permit # 2105)         0.1         0.1         0.01         0.07         0.22         19150 Combined NMHC + NOX c           (AFRL Bailding 570 - Permit # 3015/NV1         0.23         0.26         0.01         0.01         0.08         0.21         19150 C	2 + NOX of 1 22 +
0.1         0.093         0.06         0.04         0.002         19181 Combined NMHC + NOX ( 19182 Combined NMHC + NOX ( 19183 Combined NMHC + NOX ( 191913 Combined NMHC + NOX ( 19193 C	
Internal Combustion - Unit D # 19131         0.16         0.35         0.05         0.05         0.06           Bernelation - Unit D # 12009         0.36         0.35         0.05         0.05         0.06         1911           Bernelation - Unit D # 12009         0.33         0.75         -         1.09         12009 Application 3329 ST-0705           Bernelation - Unit D # 13160         0.33         0.75         -         1.25         12010 Application 3329 ST-0705           Bink Fuels Facility - Emergency Permit # 3331         0.33         0.75         -         1.25         12010 Application 3329 ST-0705           Bink Fuels Facility - Emergency Permit # 3331         0.33         0.75         -         1.00         12010 Application 3329 ST-0705           Bink Fuels Facility - Emergency Permit # 3031         0.33         0.75         0.02         0.1         19140 Combined NMC + NOX c           Marchalding 370 - Permit # 2105         0.1         0.01         0.01         0.02         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150         19150 <td></td>	
Building 1037 - Permit # 345)         0.16         0.35         0.05         0.06         19151           Remeditation - Unit D # 12000         0         0.06         10.9         12009 Application 3329 ST-070E           Remeditation - Unit D # 12010         0.33         0.75         0         1.25         12009 Application 3329 ST-070E           Mitternal Combustion - Unit D # 13160         0.33         0.75         0         1.25         12010 Application 3329 ST-070E           Mitternal Combustion - Unit D # 13160         0.3         0.75         0.005         0.02         0.1           AfRR. Building 7.5 - Permit # 2105         0.1         0.005         0.02         0.1         19140 Combined NMHC + NOX of Internal Combustion - Unit D # 19156         1         10.1         0.01         0.28         19161 Combined NMHC + NOX of Internal Combustion - Unit D # 19153         19163 Combined NMHC + NOX of Internal Combustion - Unit D # 19153         1         10.1         0.008         0.051         0.17         19163 Combined NMHC + NOX of Internal Combustion - Unit D # 19154         19163 Combined NMHC + NOX of Internal Combustion - Unit D # 19154         1         10.01         0.083         0.031         0.031         10.011         10.01         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011	C + NOX of 0.92 tpy
Remediation - Unit ID # 2000*         Image: Control of the state of the stat	
Remediation - Unit U# 120101 (Birk Fursh Sard)         0.33         0.75         1.25         12010 Application 3331 PL-567 f           Internal Combustion - Unit U# 12080)         0.1         0.1         0.00         0.005         0.02         0.1         19140 Combustion 3331 PL-567 f           AFRL Building 310 - Permit # 2005)         0.1         0.1         0.01         0.071         0.22         0.11         0.01         0.071         0.22         0.11         19140 Combuston 3331 PL-567 f         19140 Combuston 1000 F         19150 Combuston 1000 F         19153 Combined NMHC + NOX of           Internal Combuston - Unit ID # 19150         -         -         -         19153 Combined NMHC + NOX of         19154 Combuston 1000 F         19154 Combuston 1	
(Bulk Eys Facility - Emergency Permit # 3331         0.33         0.75         1.25         1210 Application 331 PL-567 f           Internal Combustion - Unit D # 19160         0.1         0.1         0.005         0.005         0.02         0.1         19140 Combined NMHC + NOX c           Internal Combustion - Unit D # 19150         0.22         0.011         0.017         0.022         0.11         19161 Combined NMHC + NOX c           Internal Combustion - Unit D # 19159         0.23         0.26         0.01         0.017         0.023         19161 Combined NMHC + NOX c           Internal Combustion - Unit D # 19163         0.23         0.26         0.01         0.08         0.26         19163 Combined NMHC + NOX c           Internal Combustion - Unit D # 19163         0.23         0.26         0.01         0.08         0.051         0.17         19163 Combined NMHC + NOX c           Internal Combustion - Unit D # 19163         0.44         0.17         0.0083         0.051         0.17         19163 Combined NMHC + NOX c           Internal Combustion - Unit D # 19163         0.14         0.17         0.0083         0.0091         0.031         19191           IUS Customs and Border Patrol Bidg 291/320 - Permit # 3016-RV21         0.036         0.16         0.022         0.021         0.025         190	ST-070E for SVE
(AREL Building 416 - Permit # 2085)         0.1         0.005         0.005         0.002         0.1         19140 Combined NMHC + NOX of Internal Combustion - Unit D # 19150         19140 Combined NMHC + NOX of Internal Combustion - Unit D # 19159         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19153         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19153         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19153         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19153         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19153         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19154         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19154         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19154         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19154         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19154         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19154         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19154         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19157         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19157         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19157         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19157         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19157         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19157         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19157         19150 Combined NMHC + NOX of Internal Combustion - Unit D # 19157         19150 Combined NMHC + NOX of Inte	PL-567 for SVE
Internal Combustion - Unit D# 19161         0.2         0.21         0.011         0.071         0.229         0.011         0.071         0.229         19161 Combined NMHC + NOX of Internal Combustion - Unit D# 19159         19161 Combined NMHC + NOX of Internal Combustion - Unit D# 19163         19161 Combined NMHC + NOX of Internal Combustion - Unit D# 19163         19161 Combined NMHC + NOX of Internal Combustion - Unit D# 19164         19163 Combined NMHC + NOX of Internal Combustion - Unit D# 19164         19163 Combined NMHC + NOX of Internal Combustion - Unit D# 19164         19163 Combined NMHC + NOX of Internal Combustion - Unit D# 19164         19163 Combined NMHC + NOX of Internal Combustion - Unit D# 3003, 19003, 19102         0.14         0.17         0.0083         0.0091         0.051         0.17         19163 Combined NMHC + NOX of Internal Combustion - Unit D# 3103, 19102         0.14         0.17         0.0083         0.0091         0.051         0.17         19163 Combined NMHC + NOX of Internal Combustion - Unit D# 31903, 19102         0.14         0.17         0.0083         0.0091         0.051         0.17         19163 Combined NMHC + NOX of Internal Combustion - Unit D# 31903, 19102         0.14         0.17         0.0083         0.0091         0.051         0.17         19163 Combined NMHC + NOX of Internal Combustion - Unit D# 31903, 19102         0.14         0.17         0.0083         0.0091         0.051         0.017         19163         19161           (JC Suctows an	
(AFRL Building 570 - Permit # 2100)         0.2         0.229         0.011         0.011         0.071         0.229         19161 Combined NMC+ NOX of Internal Combustion - Unit 10 # 19163           (AFRL Building 570 - Permit # 2105-KV1)         5.33         8.81         0.17         0.01         8.81         19159 Combined NMHC + NOX of Internal Combustion - Unit 10 # 19163           (AFRL Building 570 - Permit # 2105-KV1)         0.23         0.26         0.01         0.08         0.26         19163 Combined NMHC + NOX of Internal Combustion - Unit 10 # 19164         19163 Combined NMHC + NOX of Internal Combustion - Unit 10 # 19164         19163 Combined NMHC + NOX of Internal Combustion - Unit 10 # 19091, 19093, 19102         0.013         1.84         0.028         0.008         0.0071         19163 Combined NMHC + NOX of Internal Combustion - Unit 10 # 19091, 19093, 19102         0.033         1.584         0.124         0.0124         0.008         0.047         19903           (US Customs and Border Patrol Bildg 291/320 - Permit # 3013-RV2)         0.036         0.158         0.012         0.022         0.021         0.025         19901           (UF Customs and Border Patrol Bildg 291/320 - Permit # 3013-RV2)         0.036         0.158         0.011         0.011         0.011         0.013         19016           (UF Customs and Border Patrol Bildg 291/320 - Permit # 3031-RV2)         0.036         0.0316<	2 + NOX of 0.1 tpy
Internal Combustion - Unit 10 # 19159         5.33         8.81         0.17         0.01         8.81           (AFRL Building 570 - Permit # 2105-RV1)         0.23         0.26         0.01         0.01         8.81         19159 Combined NMHC + NOX of NMC +	C + NOX of 0.1 tpv
Internal Combustion - Unit ID # 19163         0.23         0.26         0.01         0.08         0.26         19163 Combined NMHC + NOX of Internal Combustion - Unit ID # 19164         19163 Combined NMHC + NOX of Internal Combustion - Unit ID # 19164         19163 Combined NMHC + NOX of Internal Combustion - Unit ID # 19164         19163 Combined NMHC + NOX of Internal Combustion - Unit ID # 191091, 19093, 19002         0.413         1.8         0.053         0.0081         0.053         10001         1903           Internal Combustion - Unit ID # 19104, 19093, 19002, 10.02         0.43         1.584         0.124         0.0088         0.007         1903         1903           Internal Combustion         0.066         0.316         0.022         0.021         0.025         19015           Internal Combustion         0.068         0.316         0.022         0.021         0.025         19019           Internal Combustion         0.075         0.075         0.075 <td< td=""><td>.,</td></td<>	.,
(AFSPC Radome - Permit # 2147)         0.23         0.25         0.01         0.08         0.26         19163 Combined NMHC + NOX of Internal Combustion - Unit ID # 19164           (MFRL/W ISOON Telescope - Permit # 3013-RV1)         0.14         0.17         0.0083         0.0053         0.007         19163 Combined NMHC + NOX of Internal Combustion - Unit ID # 519091, 19093, 19102         0.41         1.8         0.033         0.0093         0.0008         0.047         19163         19093           (US Customs and Border Patrol Bidg 291/320 - Permit # 3016-RV2)         0.363         1.584         0.124         0.0124         0.0008         0.047         19103           Internal Combustion         0.068         0.316         0.022         0.021         0.025         19115           (Fire Department - Permit # 3031-RV2)         0.068         0.316         0.022         0.021         0.025         19019           0.227         1.054         0.075         0.075         0.07         0.084         19071           0.227         1.054         0.075         0.075         0.07         0.084         19073           0.227         1.054         0.075         0.075         0.07         0.084         19073           0.227         1.054         0.075         0.075 <td>C + NOX of 8.81 tpy</td>	C + NOX of 8.81 tpy
(AFRL/RV ISOON Telescope - Permit # 3013-RV1)         0.14         0.17         0.0083         0.0081         0.017         0.018         0.017         0.018         0.017         0.018         0.017         0.018         0.017         0.018         0.017         0.018         0.017         0.018         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.008         0.017         0.008         0.017         0.008         0.017         0.008         0.017         0.008         0.047         19901           Internal Combustion         0.068         0.316         0.022         0.021         0.025         19015         19016           (Fire Department - Permit # 3031-RV2)         0.068         0.316         0.022         0.027         0.055         0.075         0.07         0.084         19070           (Fire Department - Permit # 3031-RV2)         0.027         1.054         0.075         0.075         0.07         0.084         19071           0.227         1.054         0.075         0.075         0.07         0.084         19072           0.227         1.054         0.075	C + NOX of 0.26 tpy
Internal Combustion - Unit ID #s 19091, 19093, 19102 (US Customs and Border Patrol Bidg 291/320 - Permit # 3016-RV2) 0.363 1.584 0.124 0.124 0.0008 0.047 19102 Internal Combustion (Fire Department - Permit # 3031-RV2) 0.068 0.316 0.022 0.022 0.021 0.025 19015 0.068 0.316 0.022 0.022 0.021 0.025 19019 0.068 0.316 0.022 0.022 0.021 0.025 19019 0.068 0.316 0.075 0.075 0.07 0.084 19070 0.227 1.054 0.075 0.075 0.07 0.084 19076 0.227 1.054 0.075 0.075 0.07 0.084 19076 0.025 19102 19130 19129 19130 19129 19130 19129 19130 19130 19142 0.01 0.012 19143 0.04 0.01 0.012 19143 0.04 0.01 0.012 19143 0.04 0.04 0.01 0.012 19143 0.04 0.04 0.025 0.005 0.006 19168 0.04 0.03 0.025 0.005 0.006 19168 0.04 0.04 0.025 0.005 0.006 19168	
(US Customs and Border Patrol Bldg 291/320 - Permit # 3016-RV2)         0.363         1.584         0.124         0.0008         0.047         1903           Internal Combustion         0.068         0.316         0.022         0.021         0.025         19015           (Fire Department - Permit # 3031-RV2)         0.068         0.316         0.022         0.021         0.025         19016           0.227         1.054         0.075         0.077         0.084         19069           0.227         1.054         0.075         0.077         0.084         19070           0.227         1.054         0.075         0.077         0.084         19071           0.227         1.054         0.075         0.077         0.084         19072           0.227         1.054         0.075         0.075         0.07         0.084         19072           0.227         1.054         0.075         0.075         0.07         0.084         19074           0.227         1.054         0.075         0.075         0.07         0.084         19075           0.227         1.054         0.075         0.075         0.07         0.084         19076           0.227         1.054	2 + NOX of 0.17 tpy
0.363         1.584         0.124         0.0008         0.047         19102           Internal Combustion         0.068         0.016         0.021         0.022         0.021         0.025         19015           (Fire Department - Permit # 3031-RV2)         0.034         0.158         0.011         0.011         0.013         19016           0.027         1.054         0.075         0.075         0.07         0.084         19070           0.227         1.054         0.075         0.075         0.07         0.084         19070           0.227         1.054         0.075         0.075         0.07         0.084         19071           0.227         1.054         0.075         0.075         0.07         0.084         19072           0.227         1.054         0.075         0.075         0.07         0.084         19074           0.227         1.054         0.075         0.075         0.07         0.084         19076           0.227         1.054         0.075         0.075         0.07         0.084         19076           0.227         1.054         0.075         0.07         0.084         19076           0.227         1.05	
(Fire Department - Permit # 3031-RV2)       0.034       0.158       0.011       0.011       0.011       0.013       19016         (Fire Department - Permit # 3031-RV2)       0.068       0.316       0.022       0.022       0.021       0.025       19019         0.227       1.054       0.075       0.075       0.07       0.084       19070         0.227       1.054       0.075       0.075       0.07       0.084       19073         0.227       1.054       0.075       0.075       0.07       0.084       19073         0.227       1.054       0.075       0.075       0.07       0.084       19073         0.227       1.054       0.075       0.075       0.07       0.084       19073         0.227       1.054       0.075       0.075       0.07       0.084       19074         0.227       1.054       0.075       0.075       0.07       0.084       19075         0.227       1.054       0.075       0.075       0.07       0.084       19076         1022       1.054       0.075       0.075       0.07       0.084       19076         1022       1.054       0.075       0.075       0.07	
N.         0.068         0.316         0.022         0.021         0.025         19019           0.227         1.054         0.075         0.075         0.07         0.084         19069           0.227         1.054         0.075         0.075         0.07         0.084         19070           0.227         1.054         0.075         0.075         0.07         0.084         19071           0.227         1.054         0.075         0.075         0.07         0.084         19072           0.227         1.054         0.075         0.075         0.07         0.084         19073           0.227         1.054         0.075         0.075         0.07         0.084         19075           0.227         1.054         0.075         0.075         0.07         0.084         19075           0.227         1.054         0.075         0.07         0.084         19075           0.227         1.054         0.075         0.07         0.084         19075           0.227         1.054         0.075         0.07         0.084         19076           0.227         1.054         0.075         0.07         0.084         19076	
0.227         1.054         0.075         0.075         0.074         0.084         19069           0.227         1.054         0.075         0.075         0.07         0.084         19070           0.227         1.054         0.075         0.075         0.07         0.084         19071           0.227         1.054         0.075         0.075         0.07         0.084         19072           0.227         1.054         0.075         0.075         0.07         0.084         19073           0.227         1.054         0.075         0.075         0.07         0.084         19073           0.227         1.054         0.075         0.075         0.07         0.084         19074           0.227         1.054         0.075         0.075         0.07         0.084         19076           0.227         1.054         0.075         0.075         0.07         0.084         19076           0.227         1.054         0.075         0.075         0.07         0.084         19076           0.227         1.054         0.075         0.075         0.075         0.075         19105           0.223         2.846         0.104<	
0.227         1.054         0.075         0.075         0.07         0.084         19070           0.227         1.054         0.075         0.075         0.07         0.084         19071           0.227         1.054         0.075         0.075         0.07         0.084         19072           0.227         1.054         0.075         0.075         0.07         0.084         19072           0.227         1.054         0.075         0.075         0.07         0.084         19073           0.227         1.054         0.075         0.075         0.07         0.084         19074           0.227         1.054         0.075         0.07         0.084         19075           0.227         1.054         0.075         0.07         0.084         19076           0.227         1.054         0.075         0.07         0.084         19076           0.227         1.054         0.075         0.07         0.084         19076           0.227         1.054         0.075         0.07         0.084         19076           0.227         2.282         2.846         0.104         0.011         0.025         19106	
0.227       1.054       0.075       0.075       0.07       0.084       19071         0.227       1.054       0.075       0.075       0.07       0.084       19072         0.227       1.054       0.075       0.075       0.07       0.084       19073         0.227       1.054       0.075       0.075       0.07       0.084       19073         0.227       1.054       0.075       0.075       0.07       0.084       19075         0.227       1.054       0.075       0.075       0.07       0.084       19075         0.227       1.054       0.075       0.075       0.07       0.084       19075         0.227       1.054       0.075       0.075       0.07       0.084       19075         0.227       1.054       0.075       0.075       0.07       0.084       19075         0.227       1.054       0.075       0.075       0.07       0.084       19076         0.227       1.054       0.075       0.075       0.07       0.084       19076         1nternal Combustion       0.028       0.013       0.022       0.022       0.025       19006         (Power Production -	
0.227       1.054       0.075       0.075       0.07       0.084       19073         0.227       1.054       0.075       0.075       0.07       0.084       19074         0.227       1.054       0.075       0.075       0.07       0.084       19075         0.227       1.054       0.075       0.075       0.07       0.084       19076         0.227       1.054       0.075       0.075       0.07       0.084       19076         0.138       0.642       0.046       0.046       0.042       0.051       19129         1       2.223       2.846       0.104       0.001       0.262       19130         Internal Combustion       0.09       0.419       0.03       0.038       19003         (Power Production - Permit # 3032-M1)       0.068       0.316       0.022       0.021       0.025       19006         0.111       1.442       0.102       0.102       0.025       19032       19032         0.122       0.515       0.037       0.037       0.04       0.041       19096         0.122       0.515       0.037       0.032       0.041       19106       19143         0.012	
0.227       1.054       0.075       0.075       0.07       0.084       19074         0.227       1.054       0.075       0.075       0.07       0.084       19075         0.227       1.054       0.075       0.075       0.07       0.084       19076         0.227       1.054       0.075       0.075       0.07       0.084       19076         0.138       0.642       0.046       0.046       0.042       0.051       19129         1nternal Combustion       0.09       0.419       0.03       0.028       0.033       19003         (Power Production - Permit # 3032-M1)       0.068       0.316       0.022       0.021       0.025       19006         0.111       1.442       0.102       0.102       0.031       0.041       19032         0.021       0.025       0.115       19032       19032       1906         0.121       0.125       0.125       0.198       0.14       19096         0.121       0.125       0.125       0.198       0.14       19106         0.022       0.021       0.022       0.021       0.022       19142         0.033       0.155       0.011       0.011 </td <td></td>	
0.227         1.054         0.075         0.075         0.07         0.084         19075           0.227         1.054         0.075         0.075         0.07         0.084         19076           0.138         0.642         0.046         0.042         0.051         19129           Internal Combustion         2.223         2.846         0.014         0.010         0.222         19130           (Power Production - Permit # 3032-M1)         0.08         0.419         0.03         0.022         0.021         0.025         19006           0.111         1.442         0.102         0.025         0.015         19032         19032           0.021         0.031         1.761         0.125         0.125         0.138         0.041         19032           0.041         0.112         0.515         0.037         0.037         0.041         19032           0.041         1.761         0.125         0.125         0.198         0.14         19036           0.041         0.12         0.515         0.037         0.037         0.034         0.041         19036           0.051         0.051         0.017         0.012         0.025         19142 <td< td=""><td></td></td<>	
0.227         1.054         0.075         0.075         0.07         0.084         19076           0.138         0.642         0.046         0.046         0.042         0.051         19129           Internal Combustion         0.09         0.419         0.03         0.03         0.022         0.023         19006           (Power Production - Permit # 3032-M1)         0.068         0.316         0.022         0.021         0.025         19032           0.11         1.442         0.102         0.022         0.011         19032         19032           0.041         0.125         0.125         0.125         0.138         0.14         19096           0.12         0.515         0.037         0.037         0.034         0.041         19196           0.048         0.316         0.022         0.021         0.025         19142         1916           0.12         0.515         0.037         0.037         0.034         0.041         19106           0.040         0.316         0.022         0.021         0.025         19142         19143           0.040         0.038         0.161         0.011         0.016         19154           0.041<	
0.138         0.642         0.046         0.046         0.042         0.051         19129           1000         2.223         2.846         0.104         0.014         0.001         0.262         19130           Internal Combustion         0.09         0.419         0.03         0.03         0.022         0.021         0.025         19003           (Power Production - Permit # 3032-M1)         0.068         0.316         0.022         0.022         0.021         0.025         19006           0.311         1.442         0.102         0.102         0.095         0.115         19032           0.413         1.761         0.125         0.125         0.198         0.14         19096           0.12         0.515         0.037         0.034         0.041         19106           0.033         0.155         0.037         0.034         0.041         19106           0.033         0.155         0.011         0.011         0.012         19142           0.033         0.155         0.011         0.011         0.012         19143           0.044         0.203         0.014         0.014         0.013         0.016         19154           0.0	
Internal Combustion 0.09 0.419 0.03 0.03 0.028 0.033 19003 (Power Production - Permit # 3032-M1) 0.068 0.316 0.022 0.022 0.021 0.025 19006 0.311 1.442 0.102 0.102 0.095 0.115 19032 0.413 1.761 0.125 0.125 0.198 0.14 19096 0.12 0.515 0.037 0.037 0.034 0.041 19106 0.068 0.316 0.022 0.022 0.021 0.025 19142 0.033 0.155 0.011 0.011 0.012 19143 0.044 0.203 0.014 0.014 0.013 0.016 19154 0.017 0.078 0.006 0.006 0.005 0.006 19168 0.43 0.72 0.025 0.025 0.001 0.010 19176 Combined NMHC + NOX of the text of text	
(Power Production - Permit # 3032-M1)       0.068       0.016       0.022       0.021       0.025       19006         0.311       1.442       0.102       0.102       0.095       0.115       19032         0.413       1.761       0.125       0.125       0.198       0.14       19096         0.12       0.515       0.037       0.034       0.041       19106         0.033       0.515       0.011       0.011       0.012       19142         0.044       0.203       0.014       0.011       0.012       19154         0.044       0.077       0.078       0.006       0.005       0.006       19168         0.043       0.72       0.025       0.025       0.001       0.010       19176 Combined NMHC + NOX of the temperature of the temperature of temp	
0.311       1.442       0.102       0.005       0.115       19032         0.413       1.761       0.125       0.125       0.198       0.14       19096         0.12       0.515       0.037       0.037       0.034       0.041       19106         0.012       0.515       0.037       0.032       0.021       0.025       19142         0.033       0.155       0.011       0.011       0.012       19143         0.044       0.203       0.014       0.013       0.016       19154         0.017       0.078       0.006       0.005       0.006       19168         0.43       0.72       0.025       0.025       0.010       19176 Combined NMHC + NOX of the temperature of the temperature of temp	
0.413       1.761       0.125       0.125       0.198       0.14       19096         0.12       0.515       0.037       0.037       0.034       0.041       19106         0.068       0.316       0.022       0.021       0.025       19142         0.033       0.155       0.011       0.011       0.012       19143         0.044       0.203       0.014       0.013       0.016       19154         0.017       0.078       0.006       0.005       0.006       19168         0.43       0.72       0.025       0.021       0.010       19176 Combined NMHC + NOX of the temperature of the temperature of tempe	
0.12       0.515       0.037       0.037       0.034       0.041       19106         0.068       0.316       0.022       0.022       0.021       0.025       19142         0.033       0.155       0.011       0.011       0.01       0.012       19143         0.044       0.203       0.014       0.014       0.013       0.016       19154         0.017       0.078       0.006       0.005       0.006       19168         0.43       0.72       0.025       0.021       0.010       19176 Combined NMHC + NOX of the text of the text of text	
0.033       0.155       0.011       0.011       0.012       19143         0.044       0.203       0.014       0.014       0.013       0.016       19154         0.017       0.078       0.006       0.005       0.006       19168         0.43       0.72       0.025       0.001       0.010       19176 Combined NMHC + NOX of the second se	
0.044         0.203         0.014         0.014         0.013         0.016         19154           0.017         0.078         0.006         0.006         0.005         0.006         19168           0.43         0.72         0.025         0.025         0.001         0.010         19176 Combined NMHC + NOX of the second sec	
0.017         0.078         0.006         0.006         0.005         0.006         19168           0.43         0.72         0.025         0.001         0.010         19176         Combined NMHC + NOX of the second	
0.43 0.72 0.025 0.025 0.001 0.010 19176 Combined NMHC + NOX of	
	C + NOX of 0.72 tov
External Combustion - Unit ID #s 14166 and 14167 1.26 1.5 0.11 0.11 0.009 0.083 0.028 14166	•••
West Side Steam Boiler - Source Registration # 3047)         1.26         1.5         0.11         0.009         0.083         0.028         14167           Landfill Mulcher - Unit ID #s 18001 and 18002         0.71         3.29         0.23         0.23         0.22         0.26         18001	
(C&D Debris Landfill Mulcher - Permit # 3048-RV1) 0.3 0.3 18002	
Viscellaneous Chemicals - Unit ID # 31999         1.03         1.03         78.03         2.93         31999 Exempt from PSD	

	-			it Limits (tons/				
Source Category	со	NOx	PM	PM ₁₀ /PM _{2.5}	SOx	voc	HAP	Notes
Fuel Dispensing - Unit ID #s 15001, 15004, and 15011				10/2.5		4.04		15001
(Government Fuels Distribution - Permit # 3090-RV1)						0.82		15004
						2.98		15011
Fuel Loading - Unit ID # 16001								
(Government Fuels Distribution - Permit # 3090-RV1)						0.26		16001
Storage Tanks - Unit ID #s 22003, 22004, 22005, 22015, and 25012						3.78		22003
(Government Fuels Distribution - Permit # 3090-RV1)						2.9		22004
						2.31		22005
						5.7		22015
						0.58		25012
Fuel Dispensing - Unit ID # 15008								
(898 MUNS - Permit # 3101-RV1)						0.117		15008
Storage Tanks - Unit ID # 25017								
(898 MUNS - Permit # 3101-RV1)						0.083		25017
External Combustion - Unit ID # 14014								
(898 MUNS - Permit # 3101-RV1)	2.25	2.68	0.2	0.2	0.02	0.68		14014
Internal Combustion - Unit ID # 19014								
(898 MUNS - Permit # 3101-RV1)	0.46	1.74	0.05	0.05	0.0008	0.05		19014
Internal Combustion - Unit ID # 19140								
(Airfield Operations - Source Registration # 3102)	0.068	0.31	0.022	0.022	0.021	0.025		19140
External Combustion - Unit ID #s 14168 and 14169	1.26	1.5	0.11	0.11	0.009	0.082	0.028	14168
(Airfield Operations - Permit # 3102)	1.26	1.5	0.11	0.11	0.009	0.082	0.028	14169
Internal Combustion - Unit ID # 19169								
(Sustainment Facility Emergency Generator - Permit # 3141-RV1)	0.85	1.58	0.05	0.05	0.04	1.58		19169 Combined NMHC + NOX of 1.58 tpy
Surface Coating - Unit Id # 21004								
(58th SOW Bldg. 482 Paint Booth - Permit # 3128)			0.032	0.032		0.67	0.144	21004
Internal Combustion - Unit Id # 19031								
(58th SOW Generator at Bldg. 1017 - Permit # 3129)	0.3	1.26	0.078	0.078	0.073	0.088		19031
Remediation - Unit ID # 12009								
(Bulk Fuels Facility - Permit # 3329)						5.45	0.16	12009 From 3329 Application for SVE
Remediation - Unit ID # 12010								
(PL 567 - Permit # 3331)	0.23	0.75				1.25		12010
Internal Combustion - Unit Id # 19179								
(KAFB DISA Antenna Tower - Permit # 3308)	0.06	0.06	0.0004	0.0004	0.02	0.06		19179
Internal Combustion - Unit Id # 19183								
(AFOTEC - Permit # 3366)	0.14	0.67	0.05	0.05	0.04			19183
Total	37.1	78.5	5.4	5.4	3.5	144.4	3.5	

### Kirtland AFB Title V Source Emissions

This page left intentionally blank.

# Attachment D

# Table D-1: Construction/Authority-to-Construct Permit and SourceRegistration List

**Table D-2: Contents of the Permit Application** 

Table D-3: Applicable Requirements and<br/>Compliance Status

Regulatory Citation	Tracking/Permit Number	Permit Title	Permit Process Equipment Number	Kirtland AFB Unit ID
20.11.41 NMAC	484-M3	58 SOW Test Cells	T400	20002
Construction Permit	404 1015	50 50 W Test Cells	T700	20004
			1	19135
20.11.41 NMAC			2	19155
Construction Permit	1759-M1-RV1	AFRL SOR Facility	3	19156
Construction Fermit			4	19157
			5	19158
20.11.41 NMAC Construction Permit	1770-RV3	58 SOW Corrosion Control Facility	1	21015
		Four 755 HP Back-	1	19170
20.11.41 NMAC Construction Permit 20.11.41 NMAC		Up Generators at	2	19171
	1777-RV2	Space Missile	3	19172
		Command	4	19173
			1	19147
	1000 100		2	19148
			4	19174
			6	19178
			7	19153
		Kirtland AFB Water	8	19089
Construction Permit	1786-M5	Plant	9	19133
			10	19131
			11	19132
			12	19134
			13	19181
			14	19182
20.11.41 NMAC Construction Permit	1945	Emergency Generator Bldg. 1037	1	19151
20.11.41 NMAC Construction Permit	2085	AFRL/RDLAS Bldg. 416 Emergency Generator	1	19160
20.11.41 NMAC Construction Permit	2100	Battlespace Environment Laboratory (BEL) Emergency Generator	1	19161

Table D-1. Construction Permit List

Regulatory Citation	Tracking/Permit Number	Permit Title	Permit Process Equipment Number	Kirtland AFB Unit ID
20.11.41 NMAC Construction Permit	2105-RV1	AFRL Bldg. 277 Diesel Generator	1	19159
20.11.41 NMAC Construction Permit	2147	AFSPC RADOME Emergency Generator	1	19163
20.11.41 NMAC Construction Permit	3013-RV1	AFRL/RV ISOON Telescope Facility	1	19164
20.11.41 NMAC		U.S. Customs and	1	19091
Construction Permit	3016-RV2	Border Protection	2	19093
		Facility	3	19102
			1	19015
			2	19016
			3	19019
20.11.41 NMAC Construction Permit	3031-RV2		4	19069
			5	19070
		Fire Department	6	19071
		File Department	7	19072
			8	19073
			9	19075
		-	11	19076
			12	19129
			13	19130
			1	19003
		Power Production	3	19006
			5	19032
			8	19096
			9	19106
			12	19142
20.11.41 NMAC	3032-M1-1AR	Emergency Power	13	19143
Construction Permit		Generators	16	19154
			17	19168
			18	19176
			19	19177
			1	14166
			2	14167
		a p	1	14166
20.11.40 NMAC	3047	Steam Boiler, West	2	14167
Source Registration		Side	3	14014
		Construction and	1	18001
20.11.41 NMAC Construction Permit	3048-2TR	Demolition Debris Landfill	2	18002
20.11.41 NMAC Construction Permit	3070-M1-1TR	Basewide Miscellaneous Paint and Chemical Usage	1	31999

 Table D-1. Construction Permit List (Continued)

Regulatory Citation	Tracking/Permit Number	Permit Title	Permit Process Equipment Number	Kirtland AFB Unit ID
			1	15001
			2	15004
			3	15011
20.11.41 NMAC		Government Fuels	4	16001
Construction Permit	3090-RV1	Distribution	5	22003ª
Construction I crimit		Operations	6	22004
		-	8	22005
			9	22015
			10	25012
			1	19014
20.11.41 NMAC	3101-RV1	898 th Munition	2	14014
Construction Permit	5101-101	Squadron	3	25017
			4	15008
			1	14168
20.11.40 NMAC Source Registration	3102	Airfield Operations	2	14169
Source Hegistanion			3	19140
20.11.41 NMAC Construction Permit	3128	58 th SOW Bldg. 482 Paint Booth	1	21004
20.11.41 NMAC Construction Permit	3129	58 th SOW Generator at Bldg. 1017	1	19031
20.11.41 NMAC Construction Permit	3141-RV1	Sustainment Facility Emergency Generator	1	19169
20.11.40 NMAC Source Registration	3329	ST-070E SVE System	1	12009
20.11.41 NMAC Construction Permit	3331	PL567 SVE System	1	12010
20.11.41 NMAC Construction Permit	3308	DISA Antenna Tower	1	19179
20.11.41 NMAC Construction Permit	3366	AFOTEC Bivouac Area 3	1	19183

Table D-1. Construction Permit List (Continued)

^a Substitution of equipment for emission unit 22005 occurred in November 2018. A 5,000-gallon tank was substituted for the permitted 10,000-gallon tank.

Table D-2. Contents of Permit Application

Requirement	NMAC Citation	Location in Application	
Application to be made on forms furnished by the AEHD AQD	20.11.42.12.A. (4)(a)	Attachment A	
Name and address of applicant, owner(s) or operator(s) of the source, responsible officials, and telephone numbers and names of agent(s) and site contact(s) familiar with operations.	20.11.42.12.A. (4)(b)	Attachment A	
Date of the application.	20.11.42.12.A. (4)(c)	Attachment A	
Description of processes and products (by SIC code); a map, such as the United States Geological Survey 7.5 minute Topographic Quadrangle map; and the source location (UTM coordinates or latitude and longitude).	20.11.42.12.A. (4)(d)	Attachment E	
Emissions information and calculations for the source and each nonexempt emission unit including: process flow sheets; identification of emission points in sufficient detail to establish fees and applicable requirements; emission rates; specific fuels, fuel use, raw materials, or production rate information; identification of air pollution control equipment and monitoring devices; maximum and standard operating schedules; alternative operating scenarios; measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies; any assumptions made in the emissions calculations; the basis for emission factors and control efficiencies used; and other relevant information the AEHD AQD may reasonably require.	20.11.42.12.A. (4)(e)	Written Section of the Title V Permit Renewal Application: Sections 5, 6, 8 Attachment A Attachment B Attachment C	
A list of insignificant activities at the source, their emissions (to the extent required by the department), and any information necessary to determine applicable requirements.	20.11.42.12.A. (4)(f)	Written Section of the Title V Permit Application: Section 9 Attachment F	
A citation and description of all applicable air pollution control requirements.	20.11.42.12.A. (4)(g)	Written Section of the Title V Permit Application: Section 5	
An explanation of any proposed exemptions from otherwise applicable requirements.	20.11.42.12.A. (4)(f)	Written Section of the Title V Permit Application: Section 2	
Information related to emissions or emission points that is required to establish the basis for fees under 20.11.2, Fees.	20.11.42.12.A. (4)(i)	Written Section of the Title V Permit Application: Section 4	
A dispersion modeling analysis (as required) using EPA-approved models and procedures, showing whether emissions from the source would cause or contribute to an exceedance of any New Mexico ambient air quality standard.	20.11.42.12.A. (4)(j)	Attachment G	

Requirement	NMAC Citation	Location in Current Application
Certification of compliance, including: a certification, by a responsible official, of the source's compliance status for each applicable requirement; a statement of methods used for determining compliance; a statement that the source will remain in compliance with existing and new applicable requirements; a schedule of submission of compliance certifications during the permit term; and a statement indicating the source's compliance status with any enhanced monitoring and compliance certification requirements of the Federal Act.	20.11.42.12.A. (4)(k)	Attachment A
For sources that are not in compliance with all applicable requirements at the time of permit application, provide a description of the compliance status with respect to all applicable requirements, a narrative of how the source will achieve compliance, a schedule of remedial measures, including an enforceable sequence of actions, and a schedule for submission of certified progress reports.	20.11.42.12.A. (4)(l)	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application

## Table D-2. Contents of Permit Application (Continued)

 Table D-3. Summary of Applicable Requirements by Source Category

Source Category	Applicable Requirements	Compliance Status
External Combustion	20.11.67 NMAC, Equipment, Emissions, Limitations	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
Fuel Dispensing	40 CFR Part 80 Subparts B and C 40 CFR Part 63 Subpart CCCCCC, Gasoline Dispensing Facilities	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
Fuel Loading	40 CFR Part 63 Subpart BBBBBB, Gasoline Distribution Bulk Terminals	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
Internal Combustion	<ul><li>20.11.63 NMAC, New Source Performance Standards for Stationary Sources</li><li>20.11.64 NMAC, Emission Standards for Hazardous Air Pollutants for Stationary Sources</li></ul>	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
Landfills	20.11.71 NMAC, Municipal Solid Waste Landfills	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
Miscellaneous Chemical and Paint Usage	None	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
Remediation	<ul> <li>20.11.65 NMAC, Volatile Organic Compounds</li> <li>20.11.63 NMAC, New Source Performance Standards for Stationary Sources</li> <li>20.11.64 NMAC, Emission Standards for Hazardous Air Pollutants for Stationary Sources</li> </ul>	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
Storage Tanks	40 CFR Part 60 Subpart Kb 20.11.65 NMAC, Volatile Organic Compounds	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application Kirtland AFB is in compliance with all applicable requirements at the time of this permit application

## Table D-3. Summary of Applicable Requirements by Source Category

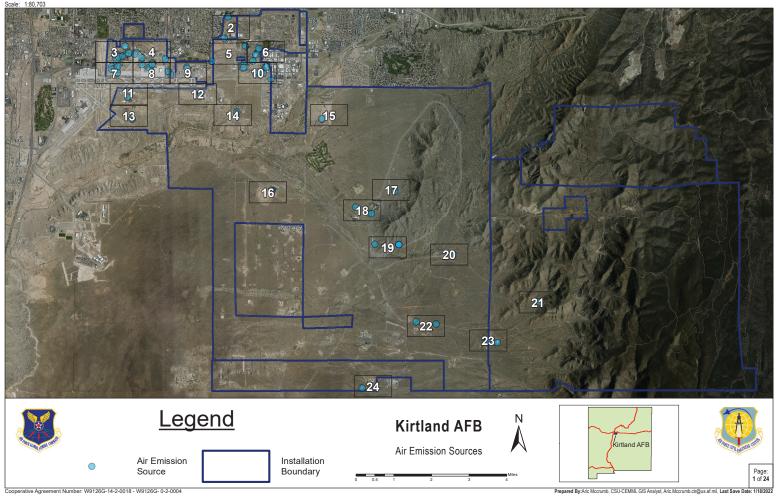
Source Category	Applicable Requirements	Compliance Status
Surface Coating - Paint Booths	None	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
Basewide	20.11.2 NMAC, Fees	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.5 NMAC, Visible Air Contaminants	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.8 NMAC, Ambient Air Quality Standards	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.20 NMAC, Fugitive Dust Control	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.21 NMAC, Open Burning	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.22 NMAC, Woodburning	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.23 NMAC, Stratospheric Ozone Protection	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.40 NMAC, Source Registration	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.41 NMAC, Construction Permit	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.42 NMAC, Operating Permits	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.43 NMAC, Stack Height Requirements	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.47 NMAC, Emissions Inventory Requirements	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.49 NMAC, Excess Emissions	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application

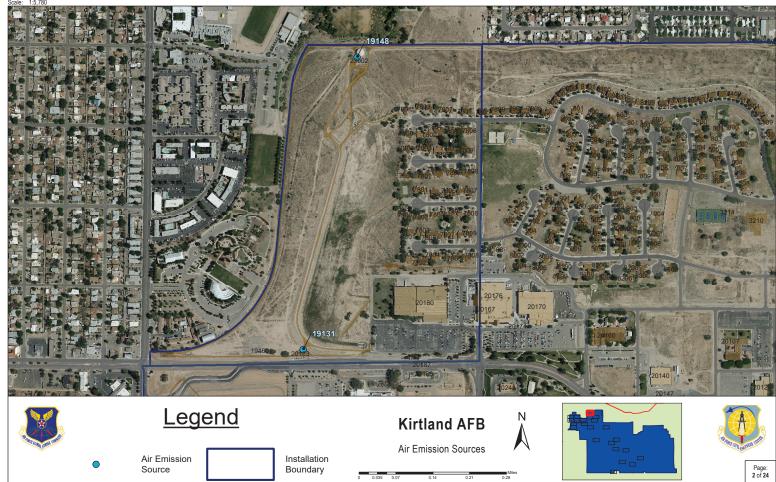
## Table D-3. Summary of Applicable Requirements by Source Category (Continued)

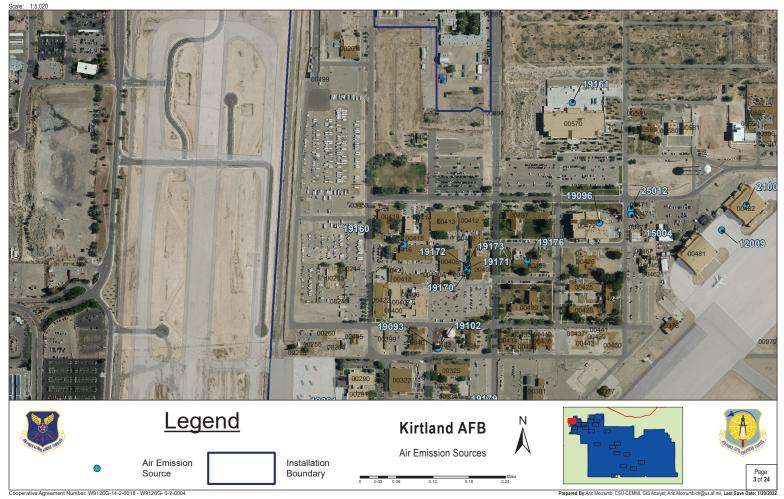
Basewide (Continued)	20.11.63 NMAC, New Source Performance Standards for Stationary Sources	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.64 NMAC, Emission Standards for Hazardous Air Pollutants for Stationary Sources	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	40 CFR Part 60 Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	40 CFR Part 60 Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	40 CFR Part 63 Subpart ZZZZ, Stationary Reciprocating Internal Combustion Engines at Area Sources NESHAP	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	40 CFR Part 61 Subpart M, Asbestos NESHAP	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.90 NMAC, Administration, Enforcement, Inspection	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.100 NMAC, Motor Vehicle Inspection – Decentralized	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	20.11.101 NMAC, Motor Vehicle Inspection – Centralized	N/A. This regulation is not effective until the EPA issues a notice requiring that inspections become centralized.
	20.11.102 NMAC, Oxygenated Fuels	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	40 CFR Part 82 Subpart B, Stratospheric Ozone Protection Program, Servicing of Motor Vehicle Air Conditioners	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	40 CFR Part 82 Subpart D, Stratospheric Ozone Protection Program, Federal Agencies	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	40 CFR Part 82 Subpart F, Stratospheric Ozone Protection Program, Recycling/Recovery	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application
	40 CFR Parts 89 and 90, Non-Road Engine	Kirtland AFB is in compliance with all applicable requirements at the time of this permit application

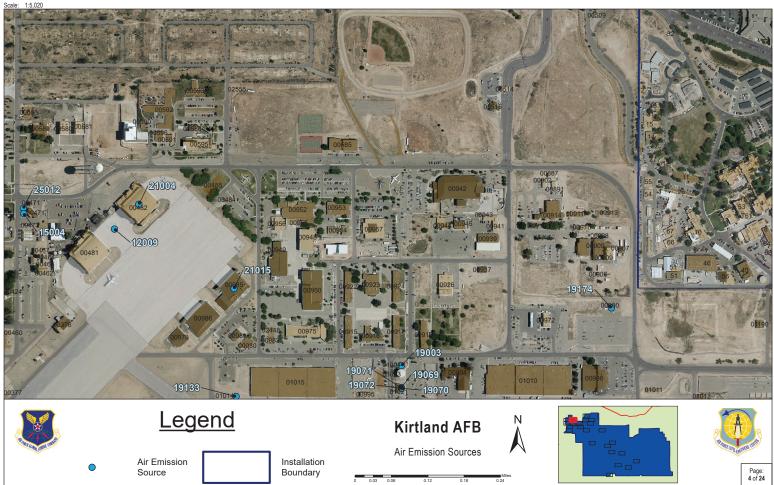
 Table D-3. Summary of Applicable Requirements by Source Category (Continued)

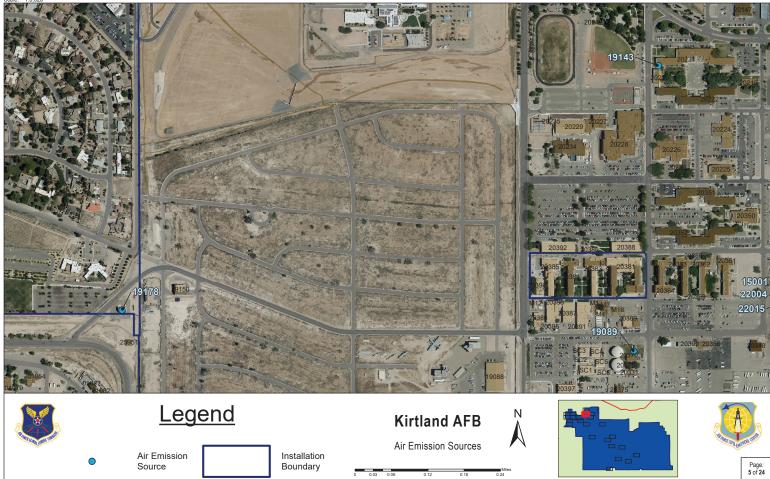
This page left intentionally blank.

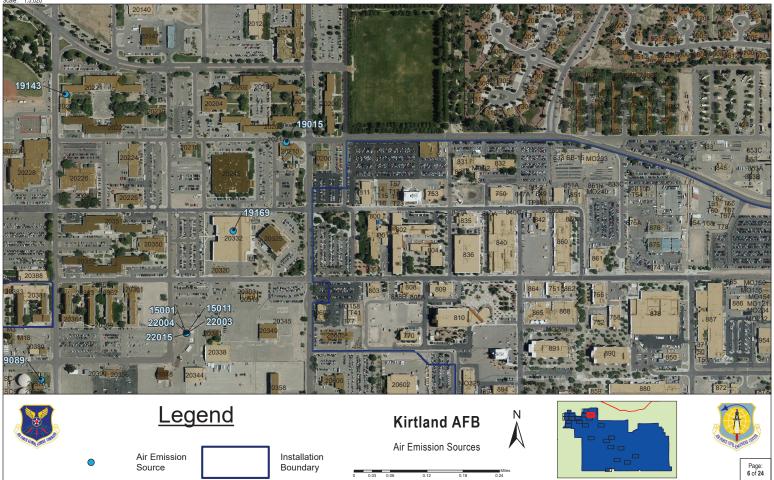

## Attachment E

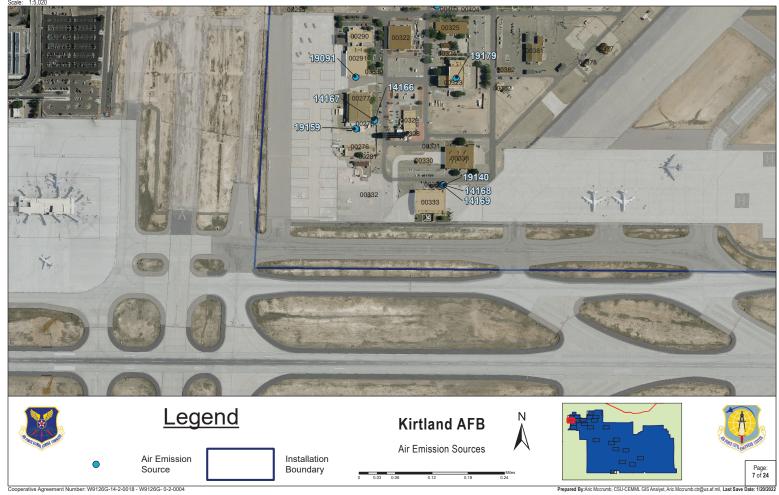

Site Map

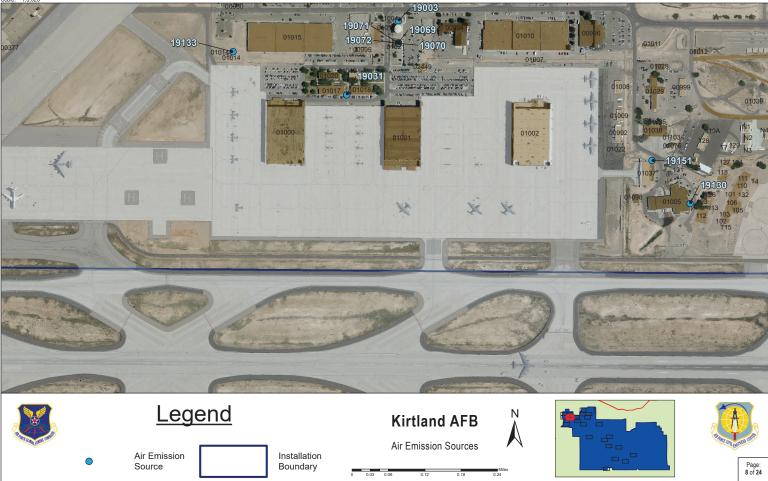

Kirtland AFB - Title V Emission Unit List						
Feature Description	Kirtland Unit ID	Permit Number	WGS_1984_UTM_Zone_13S		UTM coordinates	
	Kirtland Onit ID		Latitude	Longitude	Easting m E	Northing m
RDL – 12009 – Soil Vapor Extraction System	12009	3329	35.05361	-106.598916	354185	3880157
RDL – 12010 – Soil Vapor Extraction System	12010	3331	34.993295	-106.497567	363328	3873324
ECOM – 14014 – Boiler - B27497 - Natural Gas - 6.25 MMBtu/hr	14014	3101-RV1	35.010505	-106.546407	358899.94	3875300.64
ECOM – 14166 – Boiler -B278 - Natural Gas - 5.25 MMBtu/hr	14166	3047	35.049034	-106.607178	353423.29	3879661.54
ECOM – 14167 – Boiler -B278 - Natural Gas - 5.25 MMBtu/hr	14167	3047	35.049034	-106.607178	353423.29	3879661.54
ECOM – 14168– Boiler - B334 - Natural Gas - 5.23 MMBtu/hr	14168	3102	35.047761	-106.605551	353569.42	3879517.96
ECOM – 14169– Boiler - B334 - Natural Gas - 5.23 MMBtu/hr	14169	3102	35.047761	-106.605551	353569.42	3879517.96
FUEL – 15001– Gasoline Dispensing - B20359 - Gasoline - 2400 gal/hr	15001	3090-RV1	35.0515	-106.553554	358318.55	3879857.55
FUEL – 15004 – Gasoline Dispensing - B471 - Gasoline - 1200 gal/hr	15004	3090-RV1	35.053915	-106.601081	353988.08	3880193.96
FUEL – 15008– Gasoline Dispensing - B27497 - Gasoline - 20000 gal/yr	15008	3101-RV1	35.010505	-106.546407	358899.94	3875300.64
FUEL – 15011 – E85 Fuel Dispensing - B20359 - E85 - 1200 gal/hr	15011	3090-RV1	35.0515	-106.553554	358318.55	3879857.55
FUEL – 16001 – Gasoline Loading - B1041 - Gasoline - 300 gal/min	16001	3090-RV1	35.05142	-106.595184	354521.49	3879908.61
ICOM – 18001 – Landfill Mulcher Engine - LF268 - Diesel - 425 hp	18001	3048-RV1	35.03309	-106.527087	360701.23	3877778.41
ICOM – 18002 – Landfill Mulcher - LF268 - Mulch - 10.8 yd ³	18002	3048-RV1	35.03309	-106.527087	360701.23	3877778.41
ICOM – 19003 – Emergency Generator -B1004 - Diesel - 135 hp	19003	3032-M1	35.050931	-106.592067	354804.91	3879849.84
ICOM – 19006 – Emergency Generator - B29010 - Diesel - 102 hp	19006	3032-M1	34,968975	-106.490911	363895.26	3870617.56
ICOM – 19014 – Emergency Generator - B27497 - Diesel - 755 hp	19014	3101-RV1	35.010505	-106.546407	358899.94	3875300.64
ICOM – 19015 – Emergency Generator -B20217 - Diesel - 102 hp	19015	3031-RV2	35.055244	-106.551176	358541.89	3880269.43
ICOM – 19016 – Emergency Generator -B638 - Diesel - 40 hp	19016	3031-RV2	35.039688	-106.601607	353914.78	3878616.78
ICOM – 19019 – Emergency Generator -B30158 - Diesel - 102 hp	19019	3031-RV2	35.003325	-106.50811	362382.55	3874450.85
ICOM – 19019 – Emergency Generator - B1017 - Diesel - 355 hp	19031	3129	35.049476	-106.593301	354689.79	3879690.26
ICOM – 19032 – Emergency Generator -B20604 - Diesel - 465 hp	19032	3032-M1	35.049516	-106.548779	358750.64	3879630.73
ICOM – 19069 – Emergency Water Pump Engine -B1021 - Diesel - 340 hp	19069	3031-RV2	35.050498	-106.592061	354804.69	3879801.8
ICOM – 19009 – Emergency Water Pump Engine -B1021 - Diesel - 340 hp	19070	3031-RV2	35.050498	-106.592061	354804.69	3879801.8
ICOM – 19070 – Emergency Water Pump Engine -B1021 - Dieser - 340 hp	19070	3031-RV2	35.050498	-106.592061	354804.69	3879801.8
ICOM – 19071 – Emergency Water Pump Engine -01021 - Diesel - 340 hp	19072	3031-RV2	35.050498	-106.592061	354804.69	3879801.8
ICOM – 19072 – Emergency Water Pump Engine -BT021 - Diesel - 340 hp	19072	3031-RV2	35.040808	-106.573619	356469.79	3878700.38
ICOM – 19073 – Emergency Water Pump Engine -8758 - Diesel - 340 hp	19073	3031-RV2	35.040808	-106.573619	356469.79	3878700.38
ICOM – 19075 – Emergency Water Pump Engine -B758 - Diesel - 340 hp	19074	3031-RV2	35.040808	-106.57362	356469.79	3878700.71
ICOM – 19075 – Emergency Water Pump Engine -8758 - Diesel - 340 hp	19075	3031-RV2	35.040811	-106.57362	356469.7	3878700.71
	19078	1786-M2	35.050584	-106.557016	358001.21	3879760.88
ICOM – 19089 – Emergency Generator -B20305- Diesel - 390 hp	19089			-106.607625	353384.04	
ICOM – 19091 – Emergency Generator -B291 - Diesel - 750 hp	19091	3016-RV2	35.049884	-106.607625		3879756.47
ICOM – 19093 – Fire Pump Engine -B320 - Diesel - 660 hp	19093	3031-RV2	35.051277		353563.56	3879908.12
ICOM – 19096 – Emergency Generator -B472 - Diesel - 568 hp		3032-M1	35.05375	-106.601775	353924.5	3880176.67
ICOM – 19102 – Fire Pump Engine -B320 - Diesel - 660 hp	19102	3031-RV2	35.051277	-106.605684	353563.56	3879908.12
ICOM – 19106 – Emergency Generator -B20604 - Diesel - 166 hp	19106	3032-M1	35.049562	-106.548438	358781.82	3879635.35
ICOM – 19129 – Generator -B66701 - Diesel - 207 hp	19129	3031-RV2	34.97521	-106.443954	368192.26	3871246.13
ICOM – 19130 – Emergency Generator -B1005 - Diesel - 1186 hp	19130	3031-RV2	35.047343	-106.585107	355433.39	3879441.77
ICOM – 19131 – Emergency Generator -B20183- Diesel - 170 hp	19131	1786-M2	35.058542	-106.564464	357335.74	3880654.15
ICOM – 19132 – Emergency Generator -B30110- Diesel - 277 hp	19132	1786-M2	35.005362	-106.514152	361834.59	3874685.12
ICOM – 19133 – Emergency Generator -B1014 - Natural Gas - 57hp	19133	1786-M2	35.050323	-106.596014	354443.84	3879788.16
ICOM – 19134 – Emergency Generator -B20550- Diesel - 435 hp	19134	1786-M2	35.03504	-106.559726	357727.08	3878040.74
ICOM – 19135 – Generator -B66048 - Natural Gas - 1334 hp	19135	1759-M1	34.962551	-106.45979	366726.09	3869863.15
ICOM – 19140 – Emergency Generator - B334 - Diesel - 102 hp	19140	3102	35.047761	-106.605551	353569.42	3879517.96
ICOM – 19142 – Emergency Generator -B20420 - Diesel - 102 hp	19142	3032-M1	35.047536	-106.552437	358174.79	3879928.91
ICOM – 19143 – Emergency Generator -B20220 - Diesel - 50 hp	19143	3032-M1	35.056187	-106.556432	358064.17	3880381.49
ICOM – 19147 – Emergency Generator (Pump Station) -B20436 - Diesel - 755 hp	19147	1786-M2	35.049417	-106.556986	358001.92	3879631.41
ICOM – 19148 – Emergency Generator (Well #3) -B23900- Diesel - 535 hp	19148	1786-M2	35.065146	-106.562983	357482.29	3881384.49
ICOM – 19151 – Emergency Generator -B1037 - Diesel - 99 hp	19151	1945	35.048188	-106.586016	355351.97	3879536.81

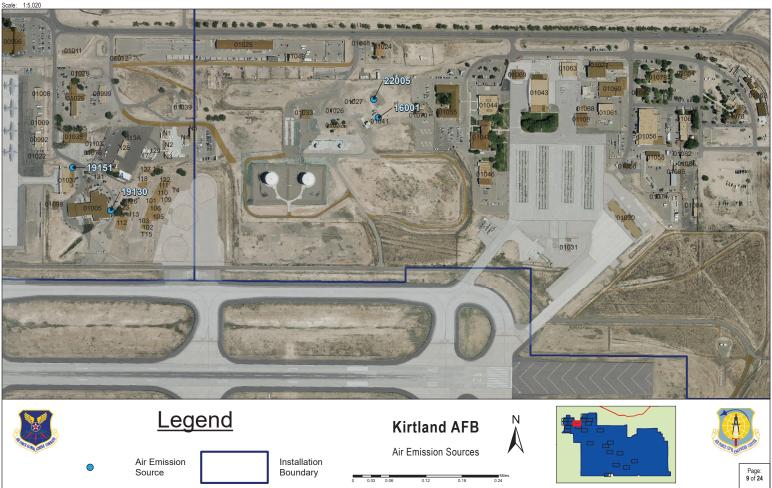

Facture Description	Kirtland Unit ID	Permit Number	WGS_1984_UTM_Zone_13S		UTM coordinates	
Feature Description	Kirtland Unit ID		Latitude	Longitude	Easting m E	Northing m N
ICOM – 19153 – Emergency Generator (Well #20) -Well #20 - Diesel - 755 hp	19153	1786-M2	35.049349	-106.557502	357954.74	3879624.6
ICOM – 19154 – Emergency Generator -B20684 - Diesel - 65.6 hp	19154	3032-M1	35.047668	-106.549535	358678.5	3879426.84
ICOM – 19155 – Emergency Generator -B66001 - Diesel - 752 hp	19155	1759-M1	34.963011	-106.463768	366363.64	3869919.48
ICOM – 19156 – Emergency Generator -B66001 - Diesel - 752 hp	19156	1759-M1	34.962991	-106.463745	366365.7	3869917.23
ICOM – 19157 – Emergency Generator -B66001 - Diesel - 752 hp	19157	1759-M1	34.962965	-106.463724	366367.58	3869914.32
ICOM – 19158 – Emergency Generator -B66001 - Diesel - 752 hp	19158	1759-M1	34.96294	-106.463701	366369.64	366369.64
ICOM – 19159 – Generator - B277 - Diesel - 762 hp	19159	2105-RV1	35.048868	-106.607626	353382.13	3879643.79
ICOM – 19160 – Emergency Generator -B416 - Diesel - 94.5 hp	19160	2085	35.053321	-106.606502	353492.61	3880136.03
ICOM – 19161 – Emergency Generator -B570 - Diesel - 348 hp	19161	2100	35.05611	-106.602483	353864.13	3880439.46
ICOM – 19163 – Emergency Generator -RADOME - Diesel - 399 hp	19163	2147	34.993411	-106.506722	362492.63	3873349.39
ICOM – 19164 – Emergency Generator -B80006 - Diesel - 250 hp	19164	3013-RV1	34.948069	-106.511697	361962.5	3868327.41
ICOM – 19168 – Emergency Generator -B20683 - Diesel - 25 hp	19168	3032-M1	35.045495	-106.546585	358943.83	3879181.66
ICOM – 19169 – Emergency Generator - B20332 - Diesel - 1490 hp	19169	3141-RV1	35.053507	-106.552439	358423.71	3880078.57
ICOM – 19170 – Emergency Generator - B402 - Diesel - 755 hp	19170	1777-RV1	35.052817	-106.604987	353630.21	3880081.45
ICOM – 19171 – Emergency Generator - B402 - Diesel - 755 hp	19171	1777-RV1	35.052849	-106.604984	353630.21	3880081.45
ICOM – 19172 – Emergency Generator - B402 - Diesel - 755 hp	19172	1777-RV1	35.052902	-106.604986	353630.12	3880087.33
ICOM – 19173 – Emergency Generator - B402 - Diesel - 755 hp	19173	1777-RV1	35.052933	-106.604987	353630.09	3880090.77
ICOM – 19174 – Emergency Generator - QSK23-G7NR2 - B900 Well #15- Diesel - 1220 hp	19174	1786-M5	35.06184511	-106.5456811	359054.39	3880993.77
ICOM – 19176 – Emergency Generator - QSX15-G9NR2 - B498 - Diesel - 755 hp	19176	3032-M1-1AR	35.05899906	-106.6005904	354041.92	3880757.12
ICOM – 19177 – Emergency Generator - QSX15-G9NR2 - B20449- Diesel - 755 hp	19177	3032-M1-1AR	35.047941	-106.550532	358542.35	3879443.2
ICOM – 19178 – Emergency Generator - QSK23-G7NR2 - B25952 Well #16 - Diesel - 1220 hp	19178	1786-M5	35.050899	-106.56734	356834.19	3879964.04
ICOM – 19179 – Emergency Generator - KOi 3404 TCR 4 - B323 - Diesel - 74.3 hp	19179	3308	35.048699	-106.602164	353880	3879617
ICOM – 19181 – Emergency Generator - QSB5-G5 - B29999 - Diesel - 176 hp	19181	1786-M5	Build. 29999			
ICOM – 19182 – Emergency Generator - QSB5-G5 -B37528 - Diesel - 176 hp	19182	1786-M5	35.010847	-106.494559	363214.89	3875209.57
AFOTEC – 19183 – Non-Emergency Generator - D60-P2 - Bivouac Area 3 - Diesel - 86.5 hp	19183	3366	34.990235	-106.476552	365241	3872956
JET – 20002 – T700 Test Cell -BXXX - Kerosene- 1100 hp	20002	0484-M3	35.032988	-106.599754	354071.89	3877870.96
JET – 20004 – T400 Test Cell -BXXX - Kerosene- 2000 hp	20004	0484-M3	35.033079	-106.59991	354057.82	3877881.29
SURF – 21004 – Paint Booth - B482 - Paint -3.0 gal//hr	21004	3128	35.054097	-106.598336	354238.76	3880210.13
SURF – 21015 – Paint Booth -B985 - Paint - 30 lb/hr	21015	1770-RV3	35.052442	-106.596065	354442.95	3880023.25
FUEL – 22003 – Gasoline Storage - B20359 - Gasoline - 10000 gal	22003	3090-RV1	35.0515	-106.553554	358318.55	3879857.55
FUEL – 22004– Gasoline Storage - B20359 - Gasoline - 10000 gal	22004	3090-RV1	35.0515	-106.553554	358318.55	3879857.55
FUEL – 22005– Gasoline Storage - B1041 - Gasoline - 10000 gal	22005	3090-RV1	35.04899	-106.579494	355948.25	3879616.32
FUEL – 22015 – E85 Fuel Storage - B20359- E85 - 10000 gal	22015	3090-RV1	35.0515	-106.553554	358318.55	3879857.55
FUEL – 25012 – Gasoline Storage - B471 - Gasoline- 3000 gal	25012	3090-RV1	35.054019	-106.601088	353987.63	3880205.5
FUEL – 25017– Gasoline Storage - B27497 - Gasoline - 20000 gal/yr	25017	3101-RV1	35.010505	-106.546407	358899.94	3875300.64

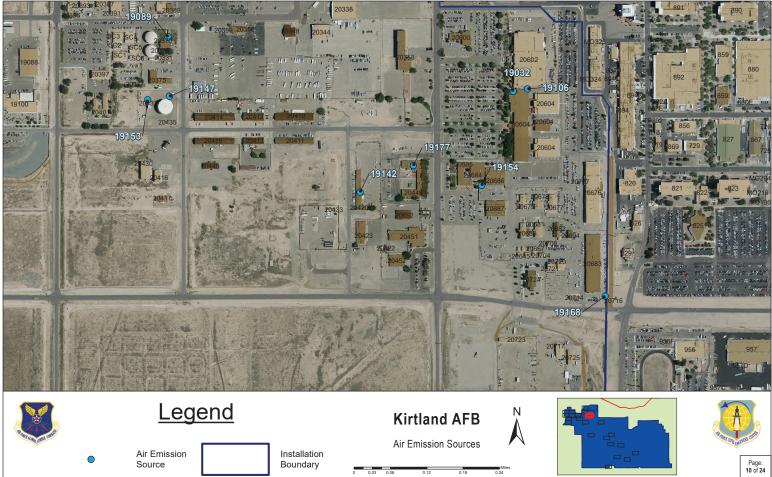

This page left intentionally blank.



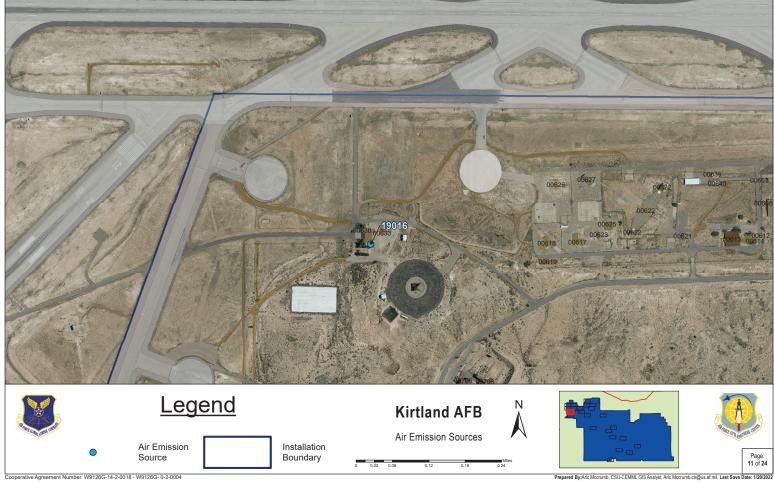



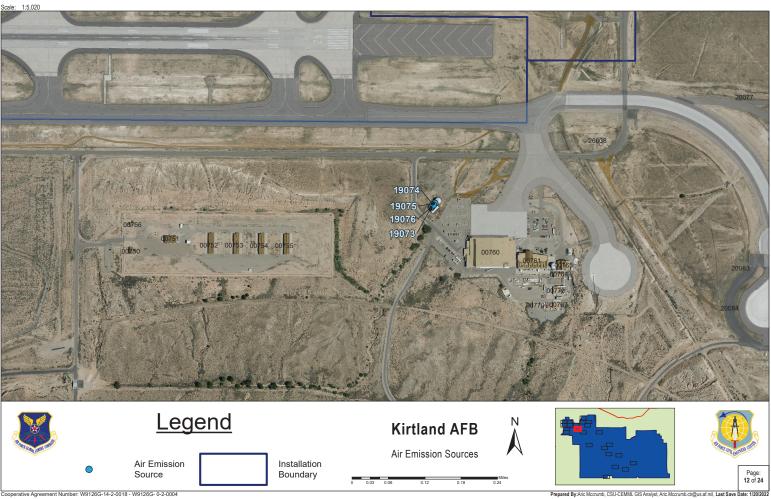



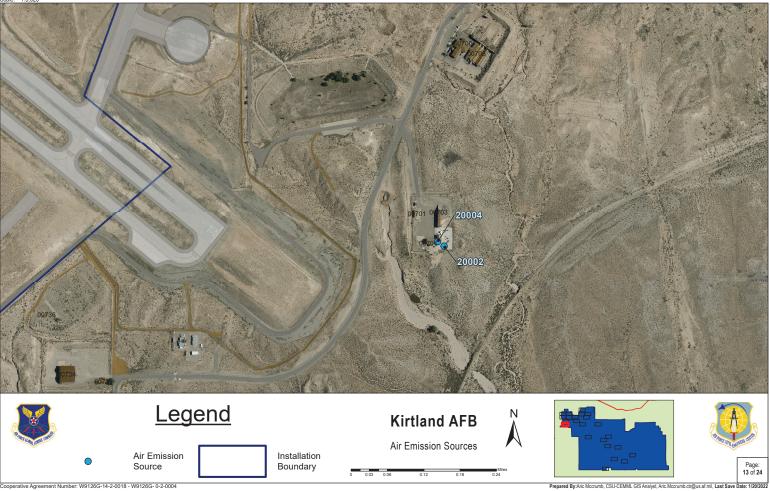



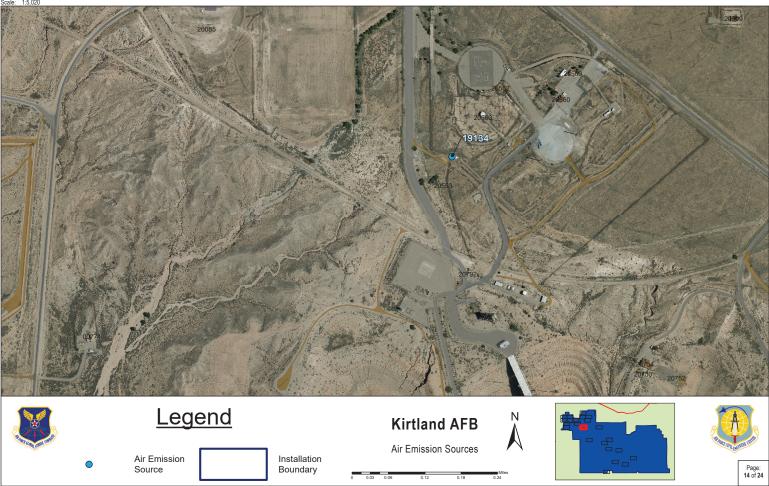



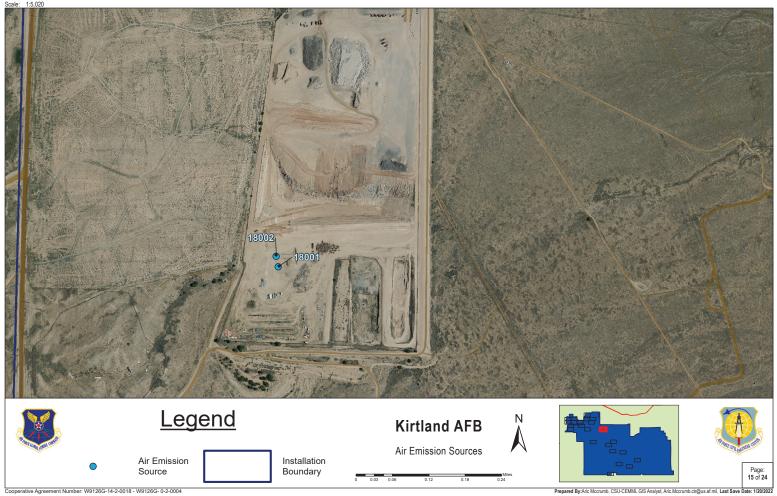


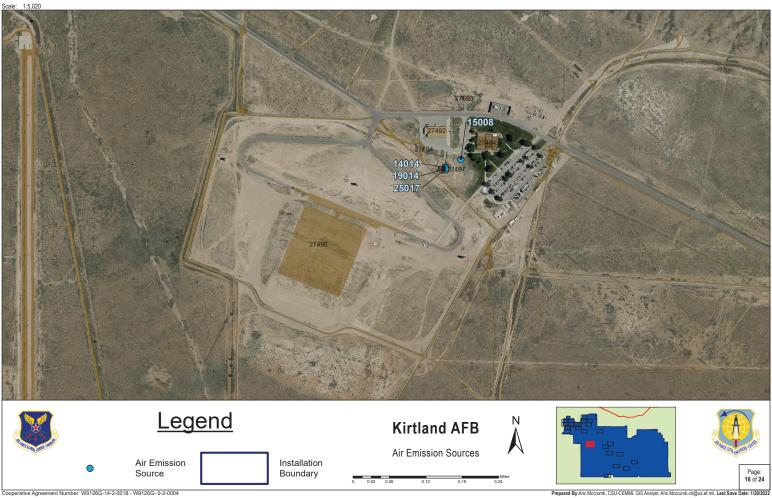



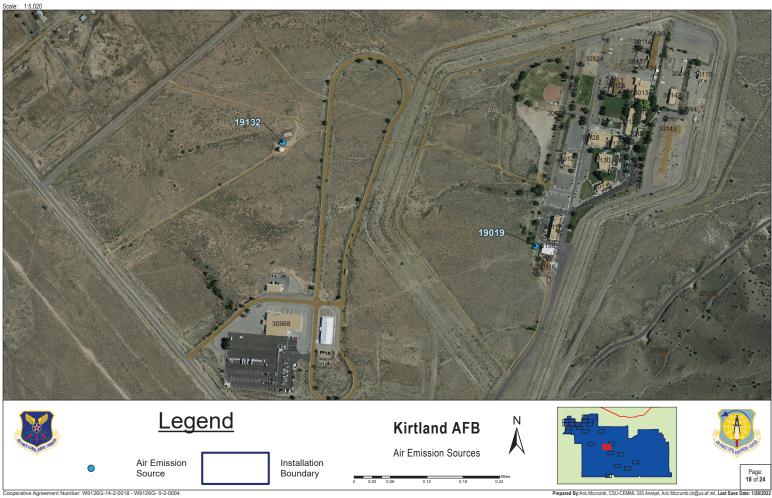



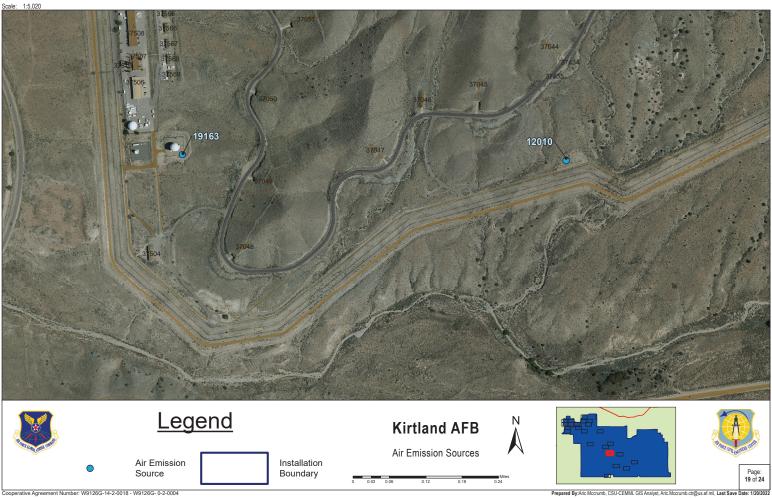


1.5 020





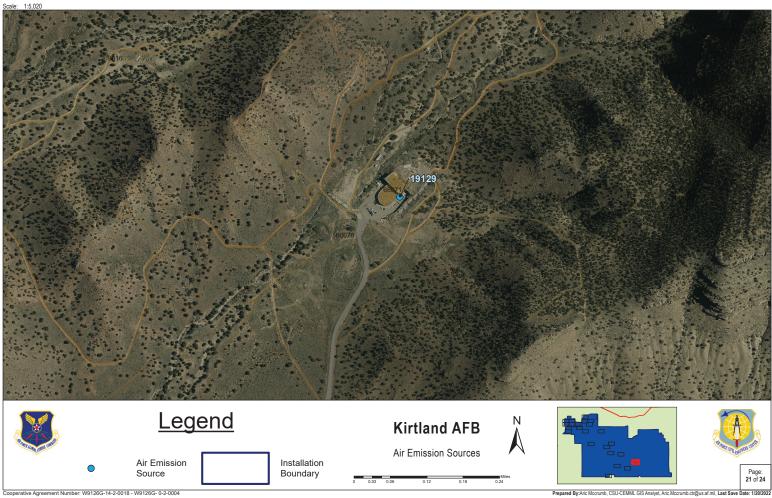


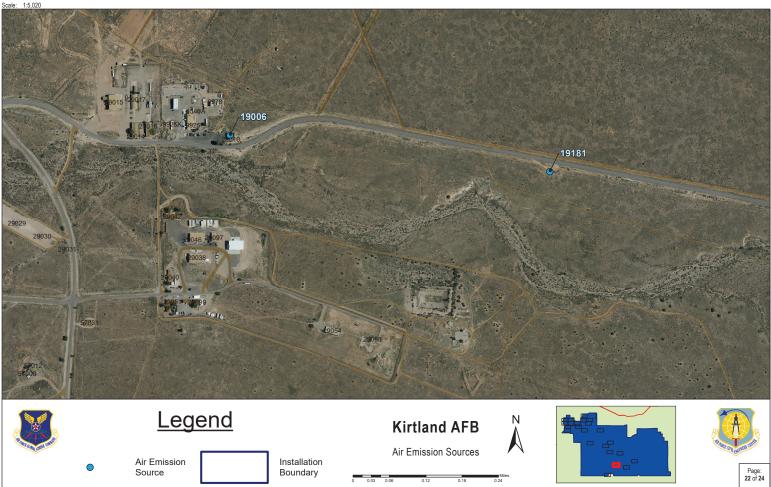


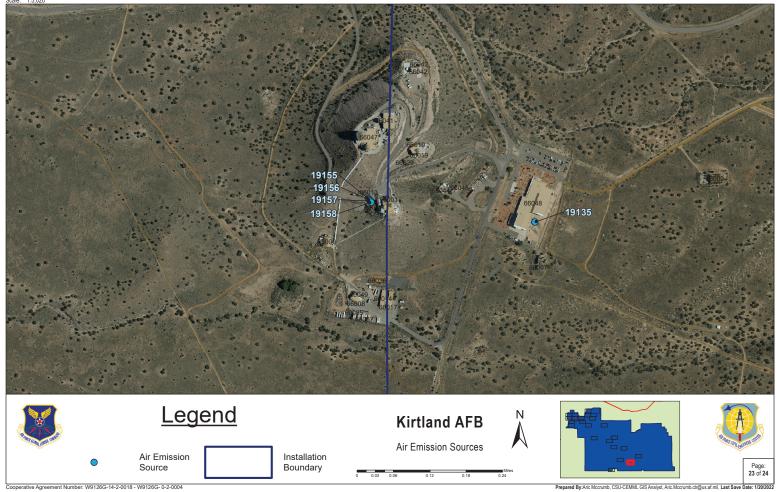



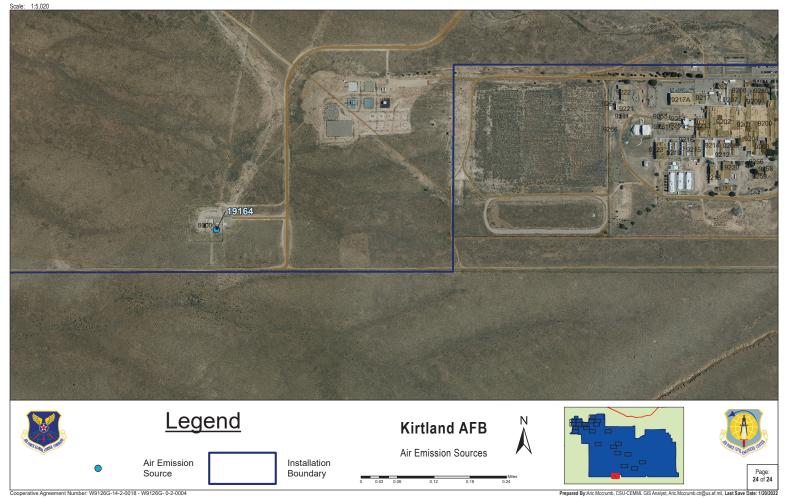

















# Attachment F

**Insignificant Inventory** 

Process Name	Building Number	Organization	Capacity (MMBtu/hr)	Fuel Type	Reason for Insignificance
EXTERNAL COMBUSTION - BOILER	201	377 CE	2.1600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	322	377 CE	2.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	323	377 CE	4.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	325	377 CE	0.5758	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	325	377 CE	0.7000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	325	377 CE	0.7000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	336	377 CE	2.8600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	377	377 CE	1.2000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	377	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	381	377 CE	0.8950	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	381	377 CE	0.7500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	382	377 CE	0.2600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	400	377 CE	1.2550	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	400	377 CE	0.2210	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	402	377 CE	2.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	402	377 CE	2.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	405	377 CE	0.5250	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	412	377 CE	1.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	412	377 CE	1.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	413	377 CE	2.5200	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	415	377 CE	0.2100	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	415	377 CE	0.2100	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	416	377 CE	0.9660	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	416	377 CE	2.3730	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	418	377 CE	1.1600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	419	377 CE	0.6800	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	422	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	423	377 CE	0.9660	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	424	377 CE	0.6270	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	425	377 CE	0.3950	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	426	377 CE	0.9660	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	472	377 CE	2.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	497	377 CE	2.1000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.

Process Name	Building Number	Organization	Capacity (MMBtu/hr)	Fuel Type	Reason for Insignificance
EXTERNAL COMBUSTION - BOILER	498	377 CE	0.7940	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	499	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	570	377 CE	4.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	585	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	585	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	589	377 CE	0.7200	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	593	377 CE	0.7600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	593	377 CE	0.9000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	595	377 CE	0.9700	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	638	377 CE	1.2000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	706	377 CE	0.2880	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	733	377 CE	1.0400	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	734	377 CE	0.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	737	377 CE	1.1700	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	751	377 CE	1.0800	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	760	377 CE	2.9290	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	760	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	761	377 CE	2.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	909	377 CE	1.3570	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	914	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	914	377 CE	1.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	915	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	916	377 CE	0.6500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	917	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	918	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	922	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	923	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	923	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	924	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	926	377 CE	0.7000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	942	377 CE	2.0500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	945	377 CE	0.2100	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	948	377 CE	0.9410	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.

Process Name	Building Number	Organization	Capacity (MMBtu/hr)	Fuel Type	Reason for Insignificance
EXTERNAL COMBUSTION - BOILER	949	377 CE	1.7300	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	950	377 CE	0.5200	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	950	377 CE	0.6000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	952	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	956	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	957	377 CE	0.7600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	975	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	979	377 CE	0.7500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	985	377 CE	0.2700	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	986	377 CE	2.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	986	377 CE	2.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	986	377 CE	0.1600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	986	377 CE	0.3999	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	994	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	996	377 CE	0.8500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1000	377 CE	2.0900	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1000	377 CE	1.9999	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1001	377 CE	4.2000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1002	377 CE	2.1000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1002	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1002	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1005	377 CE	1.2500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1005	377 CE	0.3999	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1015	377 CE	3.5200	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1017	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1018	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1020	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1025	377 CE	0.2850	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1029	377 CE	0.6900	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1029	377 CE	0.8800	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1037	377 CE	0.9990	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1037	377 CE	0.9990	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1043	377 CE	0.3999	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.

Process Name	Building Number	Organization	Capacity (MMBtu/hr)	Fuel Type	Reason for Insignificance
EXTERNAL COMBUSTION - BOILER	1044	377 CE	0.1990	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1044	377 CE	0.1990	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1047	377 CE	0.7000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1047	377 CE	0.7000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1055	377 CE	1.8900	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1056	377 CE	1.6380	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1056	377 CE	0.6380	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1060	377 CE	0.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1062	377 CE	0.3600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1062	377 CE	0.3600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1062	377 CE	0.1750	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1063	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1069	377 CE	0.9360	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1069	377 CE	0.3990	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1077	377 CE	0.7000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1078	377 CE	0.8000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1900	377 CE	0.9000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1911	377 CE	0.9830	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	1914	377 CE	1.0500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	19100	377 CE	1.4400	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	19100	377 CE	1.4400	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20107	377 CE	0.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20129	377 CE	0.7500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20130	377 CE	0.7500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20130	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20130	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20140	377 CE	1.4300	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20160	377 CE	0.9000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20170	377 CE	1.4300	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20170	377 CE	1.2000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20201	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20202	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20203	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.

Process Name	Building Number	Organization	Capacity (MMBtu/hr)	Fuel Type	Reason for Insignificance
EXTERNAL COMBUSTION - BOILER	20203	377 CE	0.7500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20203	377 CE	0.7500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20210	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20219	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20220	377 CE	0.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20221	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20221	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20221	377 CE	0.0300	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20221	377 CE	0.0300	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20222	377 CE	0.0300	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20222	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20224	377 CE	0.7500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20226	377 CE	0.7000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20228	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20228	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20228	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20228	377 CE	0.2850	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20229	377 CE	3.0500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20234	377 CE	0.9900	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20235	377 CE	3.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20245	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20245	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20325	377 CE	1.7500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20332	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20332	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20332	377 CE	2.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20332	377 CE	2.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20350	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20350	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20350	377 CE	3.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20351	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20351	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20351	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.

Process Name	Building Number	Organization	Capacity (MMBtu/hr)	Fuel Type	Reason for Insignificance
EXTERNAL COMBUSTION - BOILER	20351	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20352	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20352	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20352	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20352	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20356	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20362	377 CE	2.5110	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20362	377 CE	2.0090	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20413	377 CE	0.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20420	377 CE	0.7500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20449	377 CE	0.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20449	377 CE	0.2600	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20451	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20600	377 CE	0.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20602	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20604	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20604	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20616	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20616	377 CE	2.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20616	377 CE	2.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20676	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20684	377 CE	0.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	20685	377 CE	0.4200	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	21996	377 CE	0.3990	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	21996	377 CE	1.6250	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22000	377 CE	4.1800	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22000	377 CE	0.3000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22001	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22002	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22003	377 CE	1.4000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22010	377 CE	0.6280	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22011	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22012	377 CE	0.9500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.

Process Name	Building Number	Organization	Capacity (MMBtu/hr)	Fuel Type	Reason for Insignificance
EXTERNAL COMBUSTION - BOILER	22018	377 CE	1.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22018	377 CE	1.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22018	377 CE	1.0500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	22018	377 CE	0.9400	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	24499	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	24499	377 CE	1.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	24499	377 CE	0.2700	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	27494	377 CE	0.2999	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	28054	377 CE	0.6500	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	30116	377 CE	0.3360	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	37200	377 CE	1.1130	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	57001	377 CE	0.7220	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	66000	377 CE	1.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	66000	377 CE	1.0000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	66048	377 CE	4.5000	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.
EXTERNAL COMBUSTION - BOILER	66071	377 CE	0.6290	Natural Gas	Comfort heating or hot water production for personal use and is rated less than 5 MMBtu/hr.

### Insignificant Sources - Abrasive Blasting

Process Name	Building Number	Organization	Reason for Insignificance
ABRASIVE BLASTING - GLASS BEADS	00291	US CUSTOMS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
ABRASIVE BLASTING -GLASS BEADS	00322	AFRL	Potential to emit is no more than one ton per year of any regulated criteria pollutant
ABRASIVE BLASTING - WALNUT SHELL MEDIA	20678	377 CE	Potential to emit is no more than one ton per year of any regulated criteria pollutant
ABRASIVE BLASTING - 58 SOW - BLDG 336 - ALUMINUM OXIDE BEADS	336	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
ABRASIVE BLASTING - SAND BLAST	20432	377 TRANS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
ABRASIVE BLASTING -GLASS BEADS	66071	AFRL	Potential to emit is no more than one ton per year of any regulated criteria pollutant

#### Insignificant Sources - Degreasers

Process Name	Building Number	Model Number	Serial Number	Capacity	Capacity UOM	Organization	Reason for Insignificance
INLAND TECHNOLOGIES DEGREASER	00291	IT-40MP	110242825	-	-	US CUSTOMS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 58TH AGE	00381	IT-40MP	70242076	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND TECH DEGREASER AT 58TH TEST CELL	00702	IT-40MP	60343908	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 58TH HEAVY LIFT	01000	IT-40MP	60343989	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGREASER - COLD CLEANER - A/R	01002	F4000-P-ZX	18865	50.0000	GAL	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGREASER - COLD CLEANER	01006	U-DEGR-CDTANK-007	048617	5.0000	GAL	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND TECHNOLOGY DEGREASER	1001	IT-40MP	60343988	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 58TH HYDRO SHOP	1002	IT-95	80344256	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT NMANG VEHICEL MAINT	1058	IT-40MP	60343922	-	-	NMANG	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT NMANG TIRE SHOP	1061	IT-40MP	60343983	-	-	NMANG	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND TECH. DEGREASER-150TH SECURITY FORCES	1062	IT-48M4	111111	-	-	150TH SECURITY FORCES	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND TECH. DEGREASER-150TH SECURITY FORCES	1062	IT-48-M4	119935368	-	-	150TH SECURITY FORCES	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND MACHINE AT NMANG WHEEL AND TIRE SHOP	1063	IT-95	9044493	-	-	NMANG	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT NMANG WELDING SHOP	1064	IT-40MP	60343984	-	-	NMANG	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGREASER - COLD CLEANER	20147	30.3 R	30229390	17.0000	GAL	AAFES	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 377 SFS ARMORY	20221	IT-48	119935366	-	-	377 SFS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 377 TRANS	20338	IT-40MP	60343982	30.0000	GAL	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 377 TRANS	20338	IT-40MP	90242499	30.0000	GAL	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 377 TRANS	20338	IT-40MP	90242501	30.0000	GAL	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT BASE BODY SHOP	20344	-	-	-	-	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 377 TRANS	20349	IT-40MP	60343990	30.0000	GAL	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 377 TRANS	20349	IT-40MP	60343991	30.0000	GAL	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 377 TRANS	20349	IT-40MP	90242500	30.0000	GAL	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT AUTO HOBBY SHOP	20375	IT-40MP	60343987	-	-	377 FSS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT AUTO HOBBY SHOP	20375	IT-40MP	90242502	-	-	377 FSS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 377 TRANS	20423	IT-40MP	60343985	30.0000	GAL	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGREASER COLD	20616	1601	8086667	16.0000	GAL	MARINES	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND TECHNOLOGY DEGREASER AT POWER PRO	20678	IT-40MP	60343917	-	-	377 CE	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGREASER COLD CLEANER	29053	MODEL 34	-	30.0000	GAL	377 SFS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND DEGREASER AT 377 TRANS	333	IT-40MP	60343986	30.0000	GAL	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGR - 58 SOW - BLDG 336	336	-	-	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGR - 58 SOW - BLDG 482	482	WASHER-01	UNKNOWN	5.0000	GAL	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND TECHNOLOGIES DEGREASER 1 - CATUM	706	IT48M6	11058159	50.0000	GAL	377 SFS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND TECHNOLOGIES DEGREASER 2 - CATUM	706	IT48M6	11058172	50.0000	GAL	377 SFS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
INLAND TECHNOLOGIES DEGREASER FOR PJS BLDG 937	937	IT48WC	90744571	50.0000	GAL	PJS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGR - 58 SOW - BLDG 979	979	CE2000-27	20013	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGR - 58 SOW - BLDG 979	979	CE2000-27	20323	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGR - 58 SOW - BLDG 979	979	50381	60MG5038NW353	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
DEGR - 58 SOW - BLDG 985	985	IT-4500	70855337	-	-	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant

### Insignificant Sources - Woodworking

Process Name	Building Number	Organization	Reason for Insignificance
WOODWORKING	20679	377 CE	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WOODWORKING	1060	NMANG	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WOODWORKING	1064	NMANG	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WOODWORKING - AFRL RV - BUILDING 570	570	AFRL RV	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WOODWORKING - 58 SOW - BUILDING 482	482	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant

#### Insignificant Sources - Welding

Process Name	Building Number	Organization	Reason for Insignificance
WELDING	00406	AFRL	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	482	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	570	AFRL RV	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	01001	58 SOW	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	1064	NMANG	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	20375	377 FSS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	20423	377 LRS	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	20680	377 CE	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	20749	DTRA	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	30136	AFRL	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	472-RM126	AFRL	Potential to emit is no more than one ton per year of any regulated criteria pollutant
WELDING	66008	AFRL	Potential to emit is no more than one ton per year of any regulated criteria pollutant

#### Insignificant Sources - Above Ground Storage Tanks

Process Name	Building Number	Equipment ID	Capacity	Capacity UOM	Organization	Reason for Insignificance
DIESEL AST	20359	22001	6,000	GAL	GOVERNMENT EAST	Storage tanks, vessels, and containers holding or storing low vapor pressure 10 mmHg) liquid substances.
DIESEL AST	1036	22002	10,000	GAL	MAIN FUELS	Storage tanks, vessels, and containers holding or storing low vapor pressure 0 mmHg) liquid substances.
DIESEL AST	1036	22006-2	10,000	GAL	MAIN FUELS	Storage tanks, vessels, and containers holding or storing low vapor pressure (0 mmHg) liquid substances.
JP-8 AST	1036	22016	1.7m	GAL	MAIN FUELS	Storage tanks, vessels, and containers holding or storing low vapor pressure 40 mmHg) liquid substances.
JP-8 AST	1032	22017	1.7m	GAL	MAIN FUELS	Storage tanks, vessels, and containers holding or storing low vapor pressure 40 mmHg) liquid substances.
DIESEL AST	00471	25008	3,000	GAL	GOVERNMENT WEST	Storage tanks, vessels, and containers holding or storing low vapor pressure(0 mmHg) liquid substances.

#### Insignificant Sources - Fuel Leaks

Process Name	Building Number	Organization	Fuel Type	Reason for Insignificance
Fuel Equipment Leaks	Basewide	Basewide	Gasoline	Potential to emit is no more than one ton per year of any regulated criteria pollutant

### Insignificant Sources - Shredding Activities

Process Name	Building Number	Organization	Reason for Insignificance
Shredding Activities	66019	AFRL	Potential to emit is no more than one ton per year of any regulated criteria pollutant
Shredding Activities	20404	377 CE	Potential to emit is no more than one ton per year of any regulated criteria pollutant

This page left intentionally blank.

# Attachment G

# **Air Dispersion Modeling**

This page left intentionally blank.





# Kirtland Air Force Base

# Title V Operating Permit #527-RN1 Renewal Application Air Quality Modeling Protocol

October 2021

377 MSG/CEIE Kirtland AFB, New Mexico 87117-5270 This page left intentionally blank.

## Summary

Kirtland Air Force Base (KAFB) is planning to submit a Title V Permit Renewal Application for KAFB's Title V Operating Permit #527-R1. The application, to be filed in accordance with the requirements of 20.11.42.12.A.(2)(a)(ii) NMAC. The permit renewal will include new sources of emissions that commenced operation within 12 months prior to the previous permit application, along with other emission inventory changes.

KAFB has previously submitted base-wide Title V air quality dispersion modeling to demonstrate compliance with the appropriate National Ambient Air Quality Standards (NAAQS). The most recent demonstration did not include the recently installed equipment and therefore the KAFB base-wide modeling will be updated to include all appropriate Title V operating equipment and sources of regulated air pollutants.

The modeling assessment to be completed will conform with the latest City of Albuquerque Environmental Health Department (AEHD) Air Dispersion Modeling Guidelines for Air Quality Permitting (October 2019) and will include:

- Use of the most recent version of AERMOD (version 21112) in regulatory default mode
- Permitted emission rates from Title V permitted emission sources at KAFB
- Good Engineering Practice (GEP) stack downwash assessment
- Use of AERMET surface and profile data for the five-year period (2014-2018) as provided by the AEHD Air Quality Division (AQD)
- A comprehensive and updated grid of ambient receptor locations
- Representative ambient background values as obtained from the AEHD-AQD
- Inclusion of an offsite inventory of emitting sources per AEHD-AQD

The inputs noted above are further described in subsequent sections. A modeling report documenting the results of the proposed modeling analysis will be provided along with electronic modeling files.

## Model Input Development

The latest version of the approved air quality dispersion model AERMOD (21112) will be used in the modeling assessment and is an appropriate model version for the assessment. The AERMOD model has several required inputs to allow the model to simulate regulated air pollutant emissions to the atmosphere and subsequent downwind transport.

The model requires input parameters to define how the pollutants will be exhausted to the atmosphere which are typically through point or area/volume source types. For point source parameters, the location of the source, height above grade, exhaust temperature, exit velocity, and stack diameter and orientation (vertical, horizontal, capped) are necessary input values. These values can vary greatly depending upon the type of source modeled.

Buoyant plumes from stacks with high exhaust temperatures will typically rise higher into the atmosphere than less-buoyant, colder exhaust plumes. The temperature difference between ambient and stack exhaust

is used to calculate the individual stack buoyancy flux and therefore, determine plume rise above grade elevation.

The plume rise can also be affected by momentum flux which is due to high exit velocity plumes. High exit velocities tend to move emitted plumes higher into the atmosphere than lower velocity exhausts. The combined effects of buoyancy and momentum are calculated for each hour of meteorological data, meaning that plume heights can differ each hour for different emission sources depending on the input parameters.

### KAFB Title V Emission Inventory

The KAFB Title V source emission inventory and input parameters to be used in the modeling assessment are provided in Table 1. The modeled source descriptions, including location and exhaust parameters, are shown. As seen in Table 1, some sources will be modeled with the source type nomenclature of "point", whereas others will be modeled as "pointhor" or "pointcap". The "point" source nomenclature is applied to exhaust stacks that are vertically oriented without obstruction. The "pointhor" source nomenclature is applied to exhaust stacks that are horizontally oriented and the "pointcap" nomenclature to stacks that are vertically oriented but are capped to prevent rain from entering the stack.

The AERMOD model treats each of these source types differently, but in so doing requires the same input parameters for each type, in that, for sources subject to downwash, the actual exit temperature, exit diameter, and exit velocity are used. Hence, the values provided in Table 1 represent the model input values to be used by AERMOD.

Of note, the value of zero entered in the temperature column (e.g., for AERMOD Model ID 21004;58 SOW Paint Booth) instructs AERMOD to assign the hourly ambient temperature, found in the meteorological data record, as the exit stack temperature. This approach is consistent with that used for dispersion modeling provided the AEHD in support of the application to install the 58 SOW Paint Booth (September 2013). This approach was used for all exit temperatures that would be considered "ambient".

The source locations provided in Table 1 are based on North American Datum (NAD) 83 and Universal Transverse Mercator (UTM) projection in Zone 13 and are shown in units of meters. The base elevations are also shown in meters as measured above mean sea level (msl). The source locations for Model IDs 20002 and 20004 (Test Cells) and Model ID 19104 (Well Shaft Engine) have been updated based on aerial imagery.

Not all the emission sources in the KAFB Title V inventory operate continuously. In fact, most do not. However, in accordance with regulatory guidance, including that of the New Mexico Environment Department's Air Dispersion Modeling Guidelines, modeled emission rates should reflect maximum or permitted emission rates. The NMED guidelines state on page 42, that "all averaging periods shall be modeled using the maximum short-term emission rate allowed in the permit."

Because of the form of the 1-hour NO2 NAAQS, the US EPA issued guidance on intermittent usage of equipment and how best to model those intermittent emissions to conform to the form of the standard. The guidance suggests that for those units that operate intermittently that either they not be modeled in the 1-hour NO2 assessment or that the emission rate be "annualized", whereby the maximum short-term emission rate is multiplied by the hours of operation and then divided by the hours per year.

Construction	Unit			Source	Location (UTM) NAD83 Zone 13			Model Exhaust Parameters			
Permit	Number	Model ID	Source Description	Type	X (m)	Y (m)	Z (m msl)	Height (m)	Temp (K)	Velocity (m/s)	Diameter (m)
	20002	20002A	T700 Test Cell, 2000 hp, Jet Fuel, General	pointhor	354076.2	3877891.6	1602.35	1.22	832.04	15.398	0.914
484-M3	20002	20002B	Electric	pointhor	354069.9	3877875.8	1602.35	1.22	832.04	15.398	0.914
404-1015	20004	20004A	T400 Test Cell, 1100 hp, Jet Fuel, Pratt &	pointhor	354076.7	3877902.9	1602.35	1.22	865.93	12.000	0.914
	20004	20004B	Whitney	pointhor	354064.6	3877870.8	1602.35	1.22	865.93	12.000	0.914
		21015EF6		point	354439.4	3880000.8	1622.34	15.09	0	20.500	1.400
		21015EF7		point	354443.9	3880005.3	1622.48	15.09	0	20.500	1.400
		21015EF8		point	354447.2	3880008.3	1622.60	15.09	0	20.500	1.400
	21015	21015EF9		point	354450.3	3880009.1	1622.71	15.09	0	20.500	1.400
1770 01/2		21015E10	58 SOW Corrosion	point	354453.1	3880006.7	1622.81	15.09	0	20.500	1.400
1770-RV3		21015E11	Control Facility	point	354466.3	3880019.0	1623.00	15.09	0	20.500	1.400
		21015E12		point	354463.0	3880022.1	1623.00	15.09	0	20.500	1.400
	-	21015E13		point	354464.5	3880025.3	1623.00	15.09	0	20.500	1.400
		21015E14		point	354467.5	3880028.2	1623.00	15.09	0	20.500	1.400
		21015E15		point	354471.9	3880032.2	1623.00	15.09	0	20.500	1.400
3048-RV1	18001	18001PRI	Non-Emergency Landfill Mulcher Engine, 425 hp, Diesel, Caterpillar - Construction and Demolition Landfill (LF-268)	point	360696.2	3877703.1	1648.15	4.09	674.82	65.023	0.152
3331	12010	12010	Soil Vapor Extraction (SVE) Unit Site 58, PL- 657	point	363328.76	3873324.72	1743.15	3.96	1366.5	7.62	0.40
3366	19183	AFOTECGEN	AFOTEC Generator	pointhor	365241.4	3872956.5	1774.20	1.37	703.15	27.08	0.1006
3128	21004	21004	58 SOW Paint Booth	pointcap	354279.4	3880193.4	1622.00	6.71	0	4.001	0.762

Table 1. Kirtland AFB – Modeled Source Inventory – Description and Model Parameters

Note: The previous modeling protocol included Construction Permit 2105, Unit 19159. This unit has been removed from the modeling analysis because it has been reclassified an emergency generator and dispersion modeling is not required for emergency generators.

The US EPA intermittent usage guidance will be applied to one the emission sources noted in Table 1; the AFOTEC Generator (source ID AFOTECGEN, EQ ID 19183). The hours of operation for this emission unit are provided in Table 2 and indicate its infrequent use. An annual hours usage level of 100 hours per year will be applied to the maximum hourly emission rate and that lb/year value divided by the number of hours per year (8760) to calculate an "annualized" short-term emission rate in lb/hr for use in the NOx emission modeling.

Month/Year	Actual Hours of Operation
August 2019	4
September 2019	0
October 2019	0
November 2019	0
December 2019	3.9
January 2020	2.8
February 2020	0
March 2020	0
April 2020	0
May 2020	0
June 2020	0
July 2020	0.4
August 2020	0
September 2020	0
October 2020	0
November 2020	0.1
December 2020	0.5
January 2021	0.1
February 2021	0.1
March 2021	0
April 2021	0.4
May 2021	0.1
June 2021	3.5
July 2021	3.0
August 2021	3.1

Table 2. KAFB – Monthly Hours Actual Usage for Equipment ID 19183

The maximum short-term emission rates are provided in the right-hand section of Table 3 and the modeled emission rates are noted in the left-hand section of Table 3. These emission rates conform with the application of US EPA intermittent usage guidance for NOx for the AFOTECGEN emission source with limited actual operating hours; as provided in Table 2.

For example, the maximum short-term NOx emission rate shown in the right-hand portion of Table 3 for the modeled source 19183, the AFOTECGEN, is noted at 2.67 lb/hr. As this equipment operates less than 100 hours per year (Table 2), a conservative 100 hour per year usage level is applied to conform with the intermittent guidance policy. Hence the modeled short-term intermittent usage policy emission rate for source 19183 is 2.67 lb/hr * 100 hr/year = 267 lb/year which divided by 8760 hours per year returns an hourly emission rate of 0.0305 lb/hr or a modeled emission rate of 0.00384 gram/second as shown in the left-hand portion of Table 3.

Model ID	Maximum Short-term Modeled Emission Rates (g/s)							Maximum Short-term Emission Rates (lb/hr)						
Model ID	CO	NOx	PM	PM10	PM _{2.5}	SO ₂	CO	NOx	PM	PM10	PM2.5	SO ₂		
20002A	0.49507	0.47354	0.07906	0.07906	0.07906	0.03902	3.929	3.758	0.628	0.628	0.628	0.310		
20002B	0.49507	0.47354	0.07906	0.07906	0.07906	0.03902	3.929	3.758	0.628	0.628	0.628	0.310		
20004A	0.27174	0.16810	0.01050	0.01050	0.01050	0.02719	2.157	1.334	0.083	0.083	0.083	0.216		
20004B	0.27174	0.16810	0.01050	0.01050	0.01050	0.02719	2.157	1.334	0.083	0.083	0.083	0.216		
21015EF6	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
21015EF7	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
21015EF8	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
21015EF9	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
21015EF10	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
21015EF11	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
21015EF12	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
21015EF13	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
21015EF14	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
21015EF15	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0		
18001PRI	0.35783	1.65312	0.11844	0.11844	0.11844	0.110	2.840	13.120	0.940	0.940	0.940	0.870		
21004	0	0	0.16128	0.16128	0.16128	0	0	0	1.280	1.280	1.280	0		
12010	0.00958	0.02155	0	0	0	0	0.076	0.171	0	0	0	0		
AFOTECGEN	0.07308	0.00384	0.02394	0	0	0.00268	0.580	2.670	0.190	0.190	0.190	0.180		

Table 3. Kirtland AFB - Modeled Source Inventory – Maximum Modeled Emission Rates

This approach, while likely applicable to other emission units at KAFB (e.g., the landfill mulcher) because of actual hours of operation, is only applied to the AFOTECGEN operations for the assessment of compliance with the 1-hour NO2 NAAQS in accordance with the intermittent usage guidance.

For those emission sources which are precluded from operating continuously on a 24-hour period and wherein permit restrictions may be applied, the AERMOD model can simulate daily operating periods by using an hour-of-day emission factor. Because the landfill mulcher can only operate during daylight hours, KAFB has restricted the operation of the landfill mulcher (modeled source ID 18001PRI) to daylight periods between 0700-1700 local time.

This is simulated in AERMOD by invoking the HROFDY EMISFACT and instructing AERMOD to model those hours for which operation could occur. In using this approach, the model applies the emission rate to those hours assigned with a "1" and not to those hours assigned with a "0". For the landfill mulcher the hourly values used were 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0. This emission factor approach will be used for all emitted pollutants, including NOx to allow use of the maximum short-term emission rate while accounting for the restricted hours of operations.

## KAFB Good Engineering Practice and Downwash Analysis

Another important consideration in plume behavior is the potential effects of nearby structure or building downwash. Downwash effects can affect plume rise and the initial spreading of plumes as they leave a stack.

To determine the potential downwash effects, nearby building and structure dimensions are determined including heights above grade. For multi-tiered structures and buildings, the height of each tier and the corner coordinates are input. This information will be passed along to the building profile input program (BPIP) with the PRIME downwash version (BPIPPRM version 04274) together with stack locations and heights to calculate direction-specific building dimensions.

The downwash building dimensions are used as inputs to the AERMOD model so that the simulation of direction-specific plume downwash can be made. The BPIP program also calculates the Good Engineering Practice (GEP) stack height for each modeled stack so that a direct determination can be made of appropriate GEP heights for dispersion modeling purposes. It is likely that none of the modeled stack heights will exceed GEP heights and therefore the actual stack heights as shown in Table 1 will be modeled.

Each emission source in the KAFB modeled inventory will be reviewed for the possibility of downwash effects from nearby buildings/structures. For those structures or buildings which have recently been constructed and are near enough to be included in the downwash assessment, the corner UTM coordinates, in meters, will be input to the BPIP program along with appropriate building heights.

The KAFB Title V emission inventory sources potentially influenced by nearby structures are depicted on Figure 1 and Figure 2. The appropriate building footprint coordinates as depicted will be used to determine the direction-specific building dimension data used in the AERMOD assessment.



Figure 1. KAFB Title V Emission Source/Structure Locations



Figure 2. KAFB Title V Emission Source/Structure Locations – Test Cells

### KAFB Receptor Grid

To allow the calculation of ground-level concentrations, a grid of receptor locations is required in AERMOD. The receptor locations begin at the ambient air boundary and extend outward at regular intervals.

A Cartesian grid of receptors as used in prior KAFB modeling assessments has been updated to reflect changes to the KAFB southern boundary. The change in the southern boundary receptors encompasses the current Lovelace Biomedical Research Institute facility, as this facility is located outside of KAFB ambient air.

The receptor grid, as updated, is depicted on Figure 3 along with the KAFB Title V emission source locations. The rectangular "bump" along the southern boundary includes the updated receptor locations to conform with the Lovelace facility boundary.

As with the prior receptor grids used in support of KAFB modeling assessments, the receptor grid includes 50-meter (m) receptor placement along the KAFB fence line (ambient air boundary). Outside the fence line, a 100 m grid spacing interval will be used to a distance of 0.5 kilometers (km), and then a 500 m spacing extended beyond that to a distance of 2 km from the fence line.

In addition to these regularly spaced receptor locations, sensitive receptors will be included in the modeling for the following areas:

- Base Housing An arbitrary property line was included at the south border of the onsite base housing developments spaced 50 m apart. Onsite base housing is the housing area on both sides of Wyoming Blvd and north of Gibson and Frost Ave. Receptors will also be included for offsite base housing at Maxwell Street and Gibson Ave. Sensitive receptors will be spaced 100 m apart throughout the base housing locations.
- 2. The Base Commissary, Base Exchange, Child Care Center and Sandia Elementary School are all covered by the 100 m receptor spacing described in the base housing section above.
- 3. Outdoor recreation area including softball fields and tennis courts.
- 4. Boys and Girls Club.
- 5. Tijeras Arroyo Golf Course.
- 6. Additional sensitive receptors including Kirtland Elementary, Wherry Elementary, the Veterans Affairs Hospital, and Lovelace Hospital are located outside of the Kirtland AFB fence line and are contained within the 100 m receptor grid along Kirtland AFB's perimeter.

Because of the need to model an offsite emission inventory that includes the Lovelace Biomedical facility, two receptor grids will be used in the modeling assessment. The first grid (Figure 3/Figure 4) for the KAFB inventory, whereas the second grid (Figure 5) will be used for the KAFB/offsite inventory modeling.



Figure 3. KAFB Title V Receptor Grid and Emission Source Locations

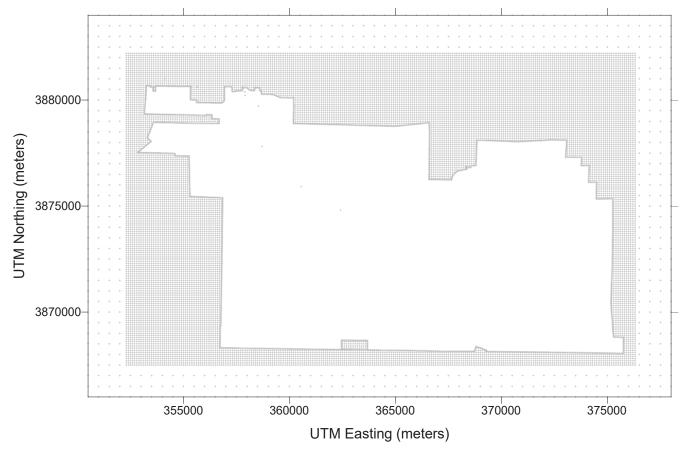



Figure 4. KAFB Title V Receptor Grid

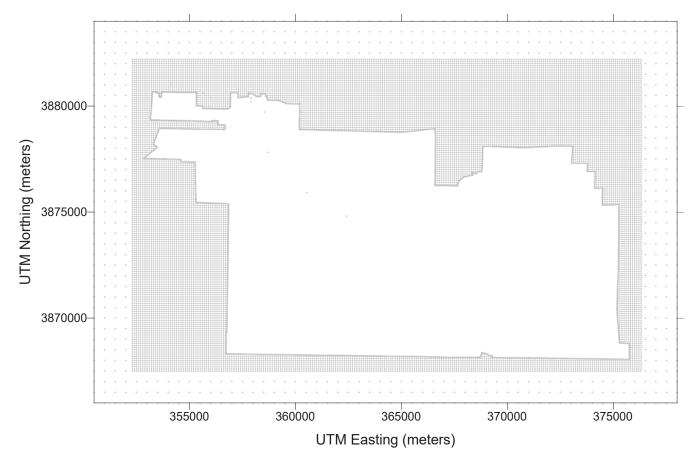



Figure 5. KAFB Title V and Off-site Inventory Receptor Grid

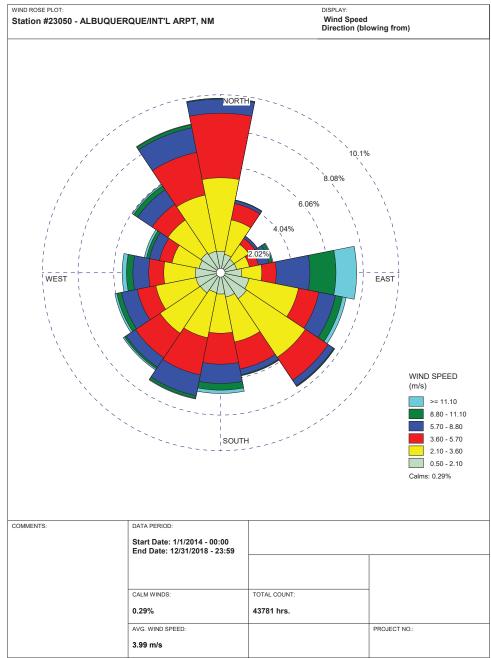
The second grid removes the receptors located within the Lovelace Biomedical facility as the reporting of modeled concentrations from the Lovelace emission sources on receptors located within the Lovelace Biomedical facility boundary is not required, as those receptor locations would be considered ambient air, *vis a vis*, Lovelace facility emissions.

KAFB has examined other areas of the KAFB ambient boundary/fence line, including those between Louisiana Blvd and Wherry Elementary, and found no other portions (apart from the Lovelace Biomedical facility area) as being within the KAFB boundary. Therefore, only the adjustment to the southern boundary receptor locations to accommodate the Lovelace Biomedical facility is necessary.

Terrain heights and base elevations will be obtained from National Elevation Data (NED) information and processed through AERMAP (18081). Both the receptor height above mean sea level along with critical hill heights for each receptor location will be used in the AERMOD evaluation.

### KAFB Meteorological Data

Another key component in the modeling assessment is the use of recent and representative meteorological data. The AEHD-AQD has provided a model-ready, five-year (2014-2018) meteorological data set from the Albuquerque airport which combines hourly surface data measured at the airport together with twice daily radiosonde sounding data also obtained at the Albuquerque atmospheric sounding facility. The hourly data were processed in AERMET (version 19191) along with geophysical surface parameters appropriate for the location.


As the airport is adjacent KAFB, this data is considered representative and qualifies as site-specific data. This data will be used in the KAFB Title V modeling as it is compatible with the newest version of AERMOD. All five years of meteorological data will be used in the modeling assessment.

A wind rose of the five years of meteorological data, as processed by the AEHD-AQD, is shown on Figure 6. As seen in the wind rose, which depicts the frequency with which winds blow from specific directions and the percentage occurring at specific wind speeds, the winds generally occur from all directions except for the northeast, due to the high blocking terrain in that direction. The largest percentage of the highest wind speeds are shown to occur with winds from the east.

Based on the wind statistics for the hourly 2014-2018 Albuquerque surface meteorological data, over 40 percent of the time wind speeds are greater than, or equal to, approximately 7 knots (8 mile/hour; 3.6 meter/sec), and over 80 percent of the time wind speeds exceed 4 knots (4.6 mile/hour).

Wind speeds of this magnitude can efficiently transport emitted pollutants downwind. Since the general land use for the KAFB is rural, there are few impediments to this efficient transport and dispersion of pollutants to downwind receptor locations.

All available hours of meteorological data over the entire five-year meteorological period will be used in the AERMOD simulation of the KAFB Title V and off-site emission inventory modeling.



WRPLOT View - Lakes Environmental Software

Figure 6. Five Year Wind Rose (2014-2018) Albuquerque

# Modeling Methodology

As provided in Table 3, the modeling of regulated air pollutants includes the emissions of carbon monoxide (CO), nitrogen oxides (NO_x) with subsequent downwind conversion to the regulated pollutant nitrogen dioxide (NO₂), particulate matter (PM), particulate matter with an aerodynamic diameter of less than or equal to 10 micrometers (PM₁₀), PM with an aerodynamic diameter of less than or equal to 2.5 micrometers (PM_{2.5}), and sulfur dioxide (SO₂).

The emission rates (Table 3) and the other model input parameters (Table 1) as well as the discussions of GEP footprints, receptor locations, and meteorological data, as described, will all be used as input to the AERMOD modeling analysis. Modeling will be completed for each pollutant, again using the appropriate emission rates per New Mexico guidance (maximum short-term). Each year of meteorological data will be modeled for the inventory of emitting sources (KAFB Title V and off-site) and concentrations calculated for each hour at each receptor location.

## Modeling for NO2

The modeling of the emissions of NOx differs from other criteria pollutants as NOx is not the form of the regulated pollutant and converts from NOx, once emitted, to the regulated compound NO2 in the free atmosphere. The US EPA has provided guidance on how to account for this conversion mechanism through a three-tiered process which includes a first-tiered no conversion mechanism to a third-tiered conversion mechanism based on the chemical interaction of emitted NOx with atmospheric ozone.

Modeling of the emissions of NOx from the KAFB Title V and off-site emission inventory will be completed using the ozone-limiting-method (OLM) and appropriate in-stack NO2/NOx ratios (ISR) to allow for the simulation of the downwind conversion of emitted NOx to NO2.

To facilitate OLM, a fixed or an attendant hourly ozone data value or file is required. Such a data set is available from the AEHD-AQD for the southern Albuquerque area and will be used in the modeling for both 1-hour and annual NO2 concentration calculations. The hourly ozone data file will be invoked in AERMOD using the command line prompt "CO OZONEFIL SV-2014-2018-O3-data.txt ppm."

The US EPA suggests a default in-stack NO2/NOx value of 0.5 when equipment-specific ISR values are not available. The AEHD-AQD has suggested an ISR value of 0.15 for those emission source engines that combust diesel fuel as well as an ISR value of 0.2 for off-site sources within 1-3 km and an ISR value of 0.3 for off-site sources within 1 km.

A combination of these ISR values will be applied in the modeling analysis with a default ISR value of 0.5 applied to all emitting sources modeled except for model ID18001PRI (landfill mulcher) in the KAFB Title V inventory, and in the off-site inventory for emission source ID RBGS (RBGS 0694-M2; Diesel fired electrical generating unit). These different ISR values will be invoked in AERMOD using the command prompt "CO NO2STACK 0.5" and the source qualifier "SO NO2RATIO .....0.15" for ID 18001PRI and "SO NO2RATIO .....0.3" for ID RBGS.

Therefore, a mix of in-stack NO2/NOx ratios will be applied along with the appropriate NOx emission rate and an agency provided hourly ozone data file to allow AERMOD to simulate the emissions and

downwind conversion of NOx to NO2 using the OLM. The US EPA and AEHD-AQD suggested "OLMGROUP ALL" will be used so that ozone concentrations are applied to all emitted plumes.

### KAFB Title V Inventory Modeling

The results of modeling of the KAFB Title V emission inventory, based on AERMOD inputs from information in Table 1 and Table 3, will be compared with the modeling values provided in Table 4. The KAFB Title V modeled concentrations for appropriate time-period averages and applicable average ranked values will be determined from the model runs and compared with the appropriate significance and ambient air quality values listed in Table 4.

Comparison of the KAFB Title V emission inventory impacts with different ambient air quality levels in Table 4 include the Significant Impact Level (SIL), the National Ambient Air Quality Standard (NAAQS), and the New Mexico standards (NMAAQS) values, which are shown for the appropriate pollutant, averaging period and rank; all in units of micrograms per cubic meter ( $\mu g/m^3$ ).

Any modeled KAFB Title V inventory impacts that are below the Significant Impact Level values provided in Table 4 may exempt that pollutant and averaging period from further modeling as a modeled concentration less than a respective SIL means that pollutant/averaging period cannot "cause or contribute to" a violation of a NAAQS or PSD increment level and therefore satisfies the requirements of demonstrating compliance.

For those KAFB Title V emitted pollutants with modeled concentrations/averaging periods in excess of a SIL value, further modeling including an off-site inventory will likely be required. As prior modeling of KAFB Title V emission inventories has suggested the need for further modeling an off-site inventory of emission sources has been examined in the event more comprehensive modeling is required.

Pollutant	Averaging Period	Significance Level (µg/m ³ )	NAAQS (µg/m³)	NMAAQS (µg/m ³ )	
СО	1-hour	2000	40069.6	14997.5	
00	8-hour	500	10303.6	9960.1	
	1-hour	7.52	188.03		
$NO_2$	24-hour	5		188.03	
	Annual	1	99.66	94.02	
PM _{2.5}	24-hour	1.2	35		
F 1V12.5	Annual	0.2	12		
PM10	24-hour	5	150		
1 14110	Annual	1			

 Table 4. KAFB – Significance and Ambient Air Quality Levels to be Used in Modeling

 Demonstration

	1-hour	7.8	196.4	
SO ₂	3-hour	25	1309.3	
	24-hour	5		261.9
	Annual	1		52.4

## KAFB Title V and Off-Site Inventory

The AEHD-AQD has previously provided information on an appropriate off-site emission inventory of sources to include in a comprehensive assessment of air quality impacts for the likely KAFB impact affected area. The off-site inventory (Table 5) includes sources as operated by the Lovelace Biomedical Research Institute facility located to the south of KAFB and Rio Bravo Generating Station (RBGS) located to the west of KAFB.

Depending on the results of the KAFB Title V emission inventory modeling, the off-site inventory as depicted on Table 5 will be modeled together with the appropriate pollutant and averaging period specific KAFB Title V emission inventory to develop maximal overlapping impacts for comparison to the appropriate NAAQS and NMAAQS.

To develop a comprehensive impact while modeling some, but not all, off-site emission sources of a similar pollutant, requires application of representative ambient background concentration values. The ambient background concentration values to be used in the comprehensive modeling analysis (KAFB Title V and off-site emission inventory) are provided in Table 6.

The maximum combined inventory (KAFB and off-site) impacts will be added to the ambient background values in Table 6 to develop aggregate total impact values for direct comparison with the NAAQS and NMAAQS. Values that are less than the NAAQS and NMAAQS will serve to demonstrate compliance with the standards.

A full description of the modeling conducted will be prepared and provided to the AEHD-AQD along with appropriate modeling files upon completion of the modeling updates.

Off-Site					]	Location UTM	1	Sta	ack Exhaus	t Paramete	rs		Modele	d Emission I	Rates (g/s)	
Emission Source	Emission Unit Type	Fuel Fired	Model ID	Model Type	Easting (m)	Northing (m)	Elevation (m msl)	Height (m)	Temp (K)	Vel (m/s)	Diam (m)	NOx	СО	SO2	PM25	PM10
Lovelace	Boiler	NatGas	BS_004	pointcap	362899	3868454	1728.2	5.7912	505.37	2.757	0.254	0.02016	0.01764	0.003024	0.001512	0.001512
	Boiler	Diesel	BS_005	pointcap	363108	3868522	1728.2	5.7912	505.37	2	0.526	0.0945	0.05418	0.03402	0.00945	0.00945
	Boiler	Diesel	BS_006	pointcap	363106	3868514	1728.2	7.3152	505.37	2	0.526	0.0945	0.05418	0.03402	0.00945	0.00945
	Boiler	Diesel	BS_007	pointcap	363107	3868538	1728.2	10.363	505.37	2.413	0.526	0.1134	0.06552	0.04032	0.01134	0.01134
	Thermal Oxidizer	NatGas	Thermox	point	363136	3868524	1728.2	10.872	1033.15	2.757	0.406	0.0252	0.02016	0.003654	0.00189	0.00189
RBGS	Electrical Generating Unit	Diesel	RBGS	point	350169.6	3877287.7	1538.3	15.24	855.93	29.962	5.182	36.3006	0.00000	10.6848	0.00000	0.00000

Table 5. Proposed Off-Site Modeled Emission Inventory

Pollutant	Averaging Period	Background Concentration Value (µg/m³)
СО	1-hour	2366
0	8-hour	1450
NO	1-hour	84.6
NO ₂	Annual	30
D) (	24-hour	20
PM _{2.5}	Annual	7.8
	24-hour	35
PM10	Annual	35
	1-hour	13.1
$SO_2$	24-hour	0
	Annual	0

Table 6. KAFB – Ambient Background Levels to be Used in Modeling Demonstration

Reference: AQP document "current backgrounds 20Dec2019.docx"

This page left intentionally blank.





# Kirtland Air Force Base

## Title V Operating Permit #527 Renewal Air Quality Modeling Assessment Report

March 2022

377 MSG/CEIE Kirtland AFB, New Mexico 87117-5270 This page intentionally left blank.

## Summary

Kirtland Air Force Base (KAFB) is submitting a Title V Permit Renewal Application for KAFB's Title V Operating Permit #527-RN1. This renewal application is due twelve (12) months prior to the date of permit expiration, pursuant to 20.11.42.12A(2)(a)(ii) NMAC. KAFB was granted an extension to submit this application on January 21, 2022.

KAFB has previously submitted base-wide Title V air quality dispersion modeling to demonstrate compliance with the appropriate National Ambient Air Quality Standards (NAAQS). The most recent demonstration, however, did not include the recently installed equipment and therefore the KAFB base-wide modeling has been updated to include all appropriate Title V operating equipment and sources of regulated air pollutants.

The modeling assessment completed and described herein, conforms with the latest City of Albuquerque Environmental Health Department (AEHD) Air Dispersion Modeling Guidelines for Air Quality Permitting (October 2019) and included:

- Use of the most recent version of AERMOD (version 21112) in regulatory default mode
- Permitted emission rates from Title V permitted emission sources at KAFB
- Good Engineering Practice (GEP) stack downwash assessment
- Use of AERMET surface and profile data for the five-year period (2014-2018) as provided by the AEHD Air Quality Division (AQD)
- A comprehensive grid of ambient receptor locations
- Representative ambient background values as obtained from the AEHD-AQD
- Inclusion of an offsite inventory of emitting sources per AEHD-AQD

The inputs noted above are further described in subsequent sections. Compliance with the appropriate NAAQS is demonstrable for the KAFB emission inventory.

## Model Input Description

The latest version of the approved air quality dispersion model AERMOD (21112) was used in the modeling assessment and is an appropriate model version for the assessment. The AERMOD model has several required inputs to allow the model to simulate regulated air pollutant emissions to the atmosphere and subsequent downwind transport.

The model requires input parameters to define how the pollutants will be exhausted to the atmosphere which are typically through point or area/volume source types. For point source parameters, the location of the source, height above grade, exhaust temperature, exit velocity, and stack diameter and orientation (vertical, horizontal, capped) are necessary input values. These values can vary greatly depending upon the type of source modeled.

Buoyant plumes from stacks with high exhaust temperatures will typically rise higher into the atmosphere than less-buoyant, colder exhaust plumes. The temperature difference between ambient and stack exhaust

is used to calculate the individual stack buoyancy flux and therefore, determine plume rise above grade elevation.

The plume rise can also be affected by momentum flux which is due to high exit velocity plumes. High exit velocities tend to move emitted plumes higher into the atmosphere than lower velocity exhausts. The combined effects of buoyancy and momentum are calculated for each hour of meteorological data, meaning that plume heights can differ each hour for different emission sources depending on the input parameters.

## KAFB Title V Emission Inventory

The KAFB Title V source emission inventory and input parameters used in the modeling assessment are provided in Table 1. The modeled source descriptions, including location and exhaust parameters, are shown. As seen in Table 1, some sources were modeled with the source type nomenclature of "point", whereas others will be modeled as "pointhor" or "pointcap". The "point" source nomenclature is applied to exhaust stacks that are vertically oriented without obstruction. The "pointhor" source nomenclature is applied to exhaust stacks that are horizontally oriented and the "pointcap" nomenclature to stacks that are vertically oriented but are capped to prevent rain from entering the stack.

The AERMOD model treats each of these source types differently, but in so doing requires the same input parameters for each type, in that, for sources subject to downwash, the actual exit temperature, exit diameter, and exit velocity are used. Hence, the values provided in Table 1 represent the model input values used in AERMOD.

Of note, the value of zero entered in the temperature column (e.g., for AERMOD Model ID 21004;58 SOW Paint Booth) instructs AERMOD to assign the hourly ambient temperature, found in the meteorological data record, as the exit stack temperature. This approach is consistent with that used for dispersion modeling provided the AEHD in support of the application to install the 58 SOW Paint Booth (September 2013). This approach was used for all exit temperatures that would be considered "ambient".

The source locations provided in Table 1 are based on North American Datum (NAD) 83 and Universal Transverse Mercator (UTM) projection in Zone 13 and are shown in units of meters. The base elevations are also shown in meters as measured above mean sea level (msl). The source locations for Model IDs 20002 and 20004 (Test Cells) and Model ID 19104 (Well Shaft Engine) have been updated based on aerial imagery.

Not all the emission sources in the KAFB Title V inventory operate continuously. In fact, most do not. However, in accordance with regulatory guidance, including that of the New Mexico Environment Department's Air Dispersion Modeling Guidelines, modeled emission rates should reflect maximum or permitted emission rates. The NMED guidelines state on page 42, that "all averaging periods shall be modeled using the maximum short-term emission rate allowed in the permit."

Because of the form of the 1-hour NO2 NAAQS, the US EPA issued guidance on intermittent usage of equipment and how best to model those intermittent emissions to conform to the form of the standard. The guidance suggests that for those units that operate intermittently that either they not be modeled in the 1-hour NO2 assessment or that the emission rate be "annualized", whereby the maximum short-term emission rate is multiplied by the hours of operation and then divided by the hours per year.

Construction	Unit			Source	Location (	UTM) NAD83	Zone 13	Μ	lodel Exha	ust Paramo	eters
Permit	Number	Model ID	Source Description	Туре	X (m)	Y (m)	Z (m msl)	Height (m)	Temp (K)	Velocity (m/s)	Diameter (m)
	20002	20002A	T700 Test Cell, 2000 hp,	pointhor	354076.2	3877891.6	1602.35	1.22	832.04	15.398	0.914
484-M3	20002	20002B	Jet Fuel, General Electric	pointhor	354069.9	3877875.8	1602.35	1.22	832.04	15.398	0.914
484-M3	20004	20004A	T400 Test Cell, 1100 hp, Jet Fuel, Pratt &	pointhor	354076.7	3877902.9	1602.35	1.22	865.93	12.000	0.914
	20004	20004B	Whitney	pointhor	354064.6	3877870.8	1602.35	1.22	865.93	12.000	0.914
		21015EF6		point	354439.4	3880000.8	1622.34	15.09	0	20.500	1.400
		21015EF7		point	354443.9	3880005.3	1622.48	15.09	0	20.500	1.400
		21015EF8		point	354447.2	3880008.3	1622.60	15.09	0	20.500	1.400
		21015EF9	-	point	354450.3	3880009.1	1622.71	15.09	0	20.500	1.400
1550 01/2	0-RV3 21015 21015E10 21015E11	21015E10	58 SOW Corrosion	point	354453.1	3880006.7	1622.81	15.09	0	20.500	1.400
17/0-RV3		21015E11	Control Facility	point	354466.3	3880019.0	1623.00	15.09	0	20.500	1.400
		21015E12		point	354463.0	3880022.1	1623.00	15.09	0	20.500	1.400
		21015E13		point	354464.5	3880025.3	1623.00	15.09	0	20.500	1.400
		21015E14		point	354467.5	3880028.2	1623.00	15.09	0	20.500	1.400
		21015E15		point	354471.9	3880032.2	1623.00	15.09	0	20.500	1.400
3048-RV1	18001	18001PRI	Non-Emergency Landfill Mulcher Engine, 425 hp, Diesel, Caterpillar - Construction and Demolition Landfill (LF-268)	point	360696.2	3877703.1	1648.15	4.09	674.82	65.023	0.152
3331	12010	12010	Soil Vapor Extraction (SVE) Unit Site 58, PL- 657	point	363328.76	3873324.72	1743.15	3.96	1366.5	7.62	0.40
3366	19183	AFOTECGEN	AFOTEC Generator	pointhor	365241.4	3872956.5	1774.20	1.37	703.15	27.08	0.1006
3128	21004	21004	58 SOW Paint Booth	pointcap	354279.4	3880193.4	1622.00	6.71	0	4.001	0.762

 Table 1. Kirtland AFB – Modeled Source Inventory – Description and Model Parameters

The US EPA intermittent usage guidance will be applied to one of the emission sources noted in Table 1; the AFOTEC Generator (source ID AFOTECGEN, EQ ID 19183). The hours of operation for this emission unit are provided in Table 2 and indicate its infrequent use. An annual hours usage level of 100 hours per year will be applied to the maximum hourly emission rate and that lb/year value divided by the number of hours per year (8760) to calculate an "annualized" short-term emission rate in lb/hr for use in the NOx emission modeling.

Month/Year	Actual Hours of Operation
August 2019	4
September 2019	0
October 2019	0
November 2019	0
December 2019	3.9
January 2020	2.8
February 2020	0
March 2020	0
April 2020	0
May 2020	0
June 2020	0
July 2020	0.4
August 2020	0
September 2020	0
October 2020	0
November 2020	0.1
December 2020	0.5
January 2021	0.1
February 2021	0.1
March 2021	0
April 2021	0.4
May 2021	0.1
June 2021	3.5
July 2021	3.0
August 2021	3.1

Table 2. KAFB – Monthly Hours Actual Usage for Equipment ID 19183

The maximum short-term emission rates are provided in the right-hand section of Table 3 and the modeled emission rates are noted in the left-hand section of Table 3. These emission rates conform with the application of US EPA intermittent usage guidance for NOx for the AFOTECGEN emission source with limited actual operating hours; as provided in Table 2.

For example, the maximum short-term NOx emission rate shown in the right-hand portion of Table 3 for the modeled source 19183, the AFOTECGEN, is noted at 2.67 lb/hr. As this equipment operates less than 100 hours per year (Table 2), a conservative 500 hour per year usage level (per US EPA guidance) was applied to conform with the intermittent guidance policy. Hence the modeled short-term intermittent usage policy emission rate for source 19183 is 2.67 lb/hr * 500 hr/year = 1335 lb/year which divided by 8760 hours per year returns an hourly emission rate of 0.1524 lb/hr or a modeled emission rate of 0.0192 gram/second as shown in the left-hand portion of Table 3.

M LLIB	Ν	Aaximum Sh	ort-term Mo	deled Emissi	ion Rates (g/	s)	Maximum Short-term Emission Rates (lb/hr)						
Model ID	CO	NOx	PM	PM10	PM _{2.5}	SO ₂	CO	NOx	РМ	PM10	PM _{2.5}	SO ₂	
20002A	0.49507	0.47354	0.07906	0.07906	0.07906	0.03902	3.929	3.758	0.628	0.628	0.628	0.310	
20002B	0.49507	0.47354	0.07906	0.07906	0.07906	0.03902	3.929	3.758	0.628	0.628	0.628	0.310	
20004A	0.27174	0.16810	0.01050	0.01050	0.01050	0.02719	2.157	1.334	0.083	0.083	0.083	0.216	
20004B	0.27174	0.16810	0.01050	0.01050	0.01050	0.02719	2.157	1.334	0.083	0.083	0.083	0.216	
21015EF6	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
21015EF7	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
21015EF8	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
21015EF9	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
21015EF10	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
21015EF11	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
21015EF12	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
21015EF13	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
21015EF14	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
21015EF15	0	0	0.06501	0.06501	0.06501	0	0	0	0.516	0.516	0.516	0	
18001PRI	0.35783	1.65312	0.11844	0.11844	0.11844	0.110	2.840	13.120	0.940	0.940	0.940	0.870	
21004	0	0	0.16128	0.16128	0.16128	0	0	0	1.280	1.280	1.280	0	
12010	0.00958	0.02155	0	0	0	0	0.076	0.171	0	0	0	0	
AFOTECGEN	0.07308	0.0192	0.02394	0	0	0.00268	0.580	2.670	0.190	0.190	0.190	0.180	

Table 3. Kirtland AFB - Modeled Source Inventory - Maximum Modeled Emission Rates

This approach, while likely applicable to other emission units at KAFB (e.g., the landfill mulcher) because of actual hours of operation, is only applied to the AFOTECGEN operations for the assessment of compliance with the 1-hour NO2 NAAQS in accordance with the intermittent usage guidance.

For those emission sources which are precluded from operating continuously on a 24-hour period and wherein permit restrictions may be applied, the AERMOD model can simulate daily operating periods by using an hour-of-day emission factor. Because the landfill mulcher can only operate during daylight hours, KAFB has restricted the operation of the landfill mulcher (modeled source ID 18001PRI) to daylight periods between 0700-1700 local time.

This is simulated in AERMOD by invoking the HROFDY EMISFACT and instructing AERMOD to model those hours for which operation could occur. In using this approach, the model applies the emission rate to those hours assigned with a "1" and not to those hours assigned with a "0". For the landfill mulcher the hourly values used were 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0. This emission factor approach was used for all emitted pollutants, including NOx to allow use of the maximum short-term emission rate while accounting for the restricted hours of operations.

## KAFB Good Engineering Practice and Downwash Analysis

Another important consideration in plume behavior is the potential effects of nearby structure or building downwash. Downwash effects can affect plume rise and the initial spreading of plumes as they leave a stack.

To determine the potential downwash effects, nearby building and structure dimensions were determined including heights above grade. For multi-tiered structures and buildings, the height of each tier and the corner coordinates were input. This information was passed along to the building profile input program (BPIP) with the PRIME downwash version (BPIPPRM version 04274) together with stack locations and heights to calculate direction-specific building dimensions.

The downwash building dimensions are used as inputs to the AERMOD model so that the simulation of direction-specific plume downwash can be completed. The BPIP program also calculates the Good Engineering Practice (GEP) stack height for each modeled stack so that a direct determination can be made of appropriate GEP heights for dispersion modeling purposes. None of the modeled stack heights exceed GEP heights and therefore the actual stack heights as shown in Table 1 were modeled.

Each emission source in the KAFB modeled inventory was reviewed for the possibility of downwash effects from nearby buildings/structures. For those structures or buildings which have recently been constructed and are near enough to be included in the downwash assessment, the corner UTM coordinates, in meters, were input to the BPIP program along with appropriate building heights.

The KAFB Title V emission inventory sources potentially influenced by nearby structures are depicted on Figure 1 and Figure 2. The appropriate building footprint coordinates as depicted were used to determine the direction-specific building dimension data used in the AERMOD assessment.



Figure 1. KAFB Title V Emission Source/Structure Locations



Figure 2. KAFB Title V Emission Source/Structure Locations – Test Cells

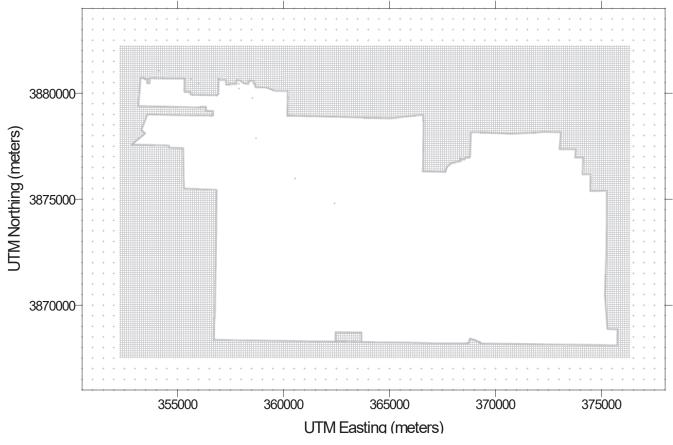
## **KAFB** Receptor Grid

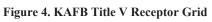
To allow the calculation of ground-level concentrations, a grid of receptor locations is required in AERMOD. The receptor locations begin at the ambient air boundary and extend outward at regular intervals.

A Cartesian grid of receptors as used in prior KAFB modeling assessments has been updated to reflect changes to the KAFB southern boundary. The change in the southern boundary receptors encompasses the current Lovelace Biomedical Research Institute facility, as this facility is located outside of KAFB ambient air.

The receptor grid, as updated, is depicted on Figure 3 along with the KAFB Title V emission source locations. The rectangular "bump" along the southern boundary includes the updated receptor locations to conform with the Lovelace facility boundary.

As with the prior receptor grids used in support of KAFB modeling assessments, the receptor grid includes 50-meter (m) receptor placement along the KAFB fence line (ambient air boundary). Outside the fence line, a 100 m grid spacing interval was used to a minimum distance of 0.5 kilometers (km), and then a 500 m spacing extended beyond that to a distance of 2 km from the fence line. Near the KAFB emission sources the receptor grid exceeds the AEHD grid requirements.


In addition to these regularly spaced receptor locations, sensitive receptors were included in the modeling for the following areas:


- Base Housing An arbitrary property line was included at the south border of the onsite base housing developments spaced 50 m apart. Onsite base housing is the housing area on both sides of Wyoming Blvd and north of Gibson and Frost Ave. Receptors will also be included for offsite base housing at Maxwell Street and Gibson Ave. Sensitive receptors will be spaced 100 m apart throughout the base housing locations.
- 2. The Base Commissary, Base Exchange, Child Care Center and Sandia Elementary School are all covered by the 100 m receptor spacing described in the base housing section above.
- 3. Outdoor recreation area including softball fields and tennis courts.
- 4. Boys and Girls Club.
- 5. Tijeras Arroyo Golf Course.
- 6. Additional sensitive receptors including Kirtland Elementary, Wherry Elementary, the Veterans Affairs Hospital, and Lovelace Hospital are located outside of the Kirtland AFB fence line and are contained within the 100 m receptor grid along Kirtland AFB's perimeter.

Because of the need to model an offsite emission inventory that includes the Lovelace Biomedical facility, two receptor grids were used in the modeling assessment. The first grid (Figure 3/Figure 4) for the KAFB inventory, whereas the second grid (Figure 5) was used for the KAFB/off-site inventory modeling.



Figure 3. KAFB Title V Receptor Grid and Emission Source Locations





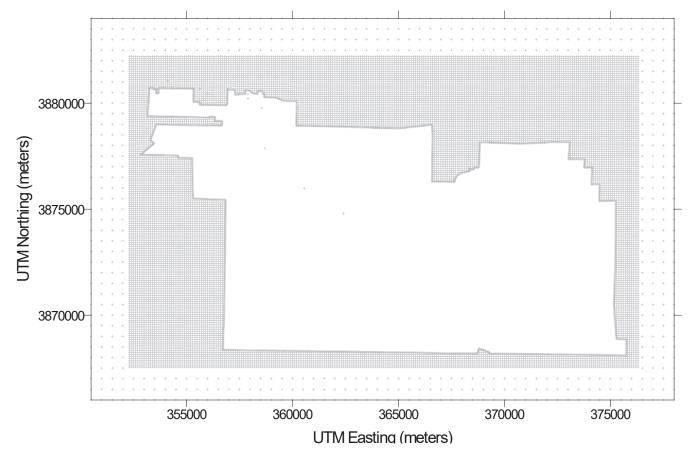



Figure 5. KAFB Title V and Off-site Inventory Receptor Grid

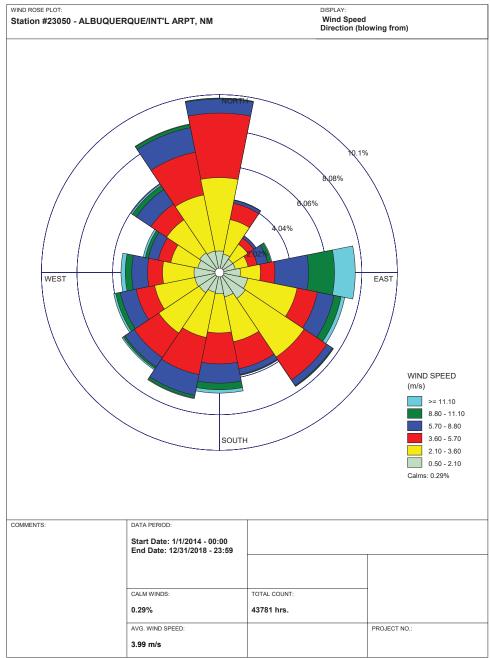
The second grid removes the receptors located within the Lovelace Biomedical facility as the reporting of modeled concentrations from the Lovelace emission sources on receptors located within the Lovelace Biomedical facility boundary is not required, as those receptor locations would be considered ambient air, *vis a vis*, Lovelace facility emissions.

KAFB has examined other areas of the KAFB ambient boundary/fence line, including those between Louisiana Blvd and Wherry Elementary, and found no other portions (apart from the Lovelace Biomedical facility area) as being within the KAFB boundary. Therefore, only the adjustment to the southern boundary receptor locations to accommodate the Lovelace Biomedical facility was necessary.

Terrain heights and base elevations were obtained from National Elevation Data (NED) information and processed through AERMAP (18081). Both the receptor height above mean sea level along with critical hill heights for each receptor location were used in the AERMOD evaluation.

## KAFB Meteorological Data

Another key component in the modeling assessment is the use of recent and representative meteorological data. The AEHD-AQD has provided a model-ready, five-year (2014-2018) meteorological data set from the Albuquerque airport which combines hourly surface data measured at the airport together with twice daily radiosonde sounding data also obtained at the Albuquerque atmospheric sounding facility. The hourly data were processed in AERMET (version 19191) along with geophysical surface parameters appropriate for the location.


As the airport is adjacent KAFB, this data is considered representative and qualifies as site-specific data. This data was used in the KAFB Title V modeling as it is compatible with the newest version of AERMOD. All five years of meteorological data were used in the modeling assessment.

A wind rose of the five years of meteorological data, as processed by the AEHD-AQD, is shown on Figure 6. As seen in the wind rose, which depicts the frequency with which winds blow from specific directions and the percentage occurring at specific wind speeds, the winds generally occur from all directions except for the northeast, due to the high blocking terrain in that direction. The largest percentage of the highest wind speeds are shown to occur with winds from the east.

Based on the wind statistics for the hourly 2014-2018 Albuquerque surface meteorological data, over 40 percent of the time wind speeds are greater than, or equal to, approximately 7 knots (8 mile/hour; 3.6 meter/sec), and over 80 percent of the time wind speeds exceed 4 knots (4.6 mile/hour).

Wind speeds of this magnitude can efficiently transport emitted pollutants downwind. Since the general land use for the KAFB is rural, there are few impediments to this efficient transport and dispersion of pollutants to downwind receptor locations.

All available hours of meteorological data over the entire five-year meteorological period were used in the AERMOD simulation of the KAFB Title V and off-site emission inventory modeling.



WRPLOT View - Lakes Environmental Software

Figure 6. Five Year Wind Rose (2014-2018) Albuquerque

## Modeling Methodology

As provided in Table 3, the modeling of regulated air pollutants includes the emissions of carbon monoxide (CO), nitrogen oxides (NO_x) with subsequent downwind conversion to the regulated pollutant nitrogen dioxide (NO₂), particulate matter (PM), particulate matter with an aerodynamic diameter of less than or equal to 10 micrometers (PM₁₀), PM with an aerodynamic diameter of less than or equal to 2.5 micrometers (PM_{2.5}), and sulfur dioxide (SO₂).

The emission rates (Table 3) and the other model input parameters (Table 1) as well as the discussions of GEP footprints, receptor locations, and meteorological data, as described, were used as input to the AERMOD modeling analysis. Modeling was completed for each pollutant, again using the appropriate emission rates per New Mexico guidance (maximum short-term). Each year of meteorological data was modeled for the inventory of emitting sources (KAFB Title V and off-site) and concentrations calculated for each hour at each receptor location.

## Modeling for NO2

The modeling of the emissions of NOx differs from other criteria pollutants as NOx is not the form of the regulated pollutant and once emitted, converts from NOx to the regulated compound NO2 in the free atmosphere. The US EPA has provided guidance on how to account for this conversion mechanism through a three-tiered process which includes a first-tiered no conversion mechanism to a third-tiered conversion mechanism based on the chemical interaction of emitted NOx with atmospheric ozone.

Modeling of the emissions of NOx from the KAFB Title V and off-site emission inventory was completed using the ozone-limiting-method (OLM) and appropriate in-stack NO2/NOx ratios (ISR) to allow for the simulation of the downwind conversion of emitted NOx to NO2.

To facilitate OLM, a fixed or an attendant hourly ozone data value or file is required. Such a data set is available from the AEHD-AQD for the southern Albuquerque area and was used in the modeling for both 1-hour and annual NO2 concentration calculations. The hourly ozone data file was invoked in AERMOD using the command line prompt "CO OZONEFIL SV-2014-2018-O3-data.txt ppm."

The US EPA suggests a default in-stack NO2/NOx value of 0.5 when equipment-specific ISR values are not available. The AEHD-AQD has suggested an ISR value of 0.15 for those emission source engines that combust diesel fuel as well as an ISR value of 0.2 for off-site sources within 1-3 km and an ISR value of 0.3 for off-site sources within 1 km.

A combination of these ISR values were used in the NO2 modeling analysis. For the KAFB Title V inventory assessment the default ISR value of 0.5 was applied to all emitting sources modeled except for model ID18001PRI (landfill mulcher) as this is an emission unit that combusts diesel fuel and therefore the appropriate ISR value of 0.15 was used and invoked in AERMOD using the source qualifier "SO NO2RATIO .....0.15" for ID 18001PRI.

A seasonal and hourly NO2 ambient background data file was also used as provided by the AEHD-AQD. The 96 separate values noted in Table 4 were applied in AERMOD to simulate the different ambient NO2 concentrations during those hourly periods occurring within those representative seasons. The values shown in Table 4 are in units of micrograms per cubic meter.

Hour	Winter	Spring	Summer	Fall
1	72.1	47.6	29.3	65.6
2	67.8	48.3	27.7	59.7
3	67.7	46	26.4	57.9
4	68.4	48.9	26.6	58.9
5	69.1	51.7	32.7	58
6	69.7	63.9	39.3	57.8
7	72.8	70.7	46.4	63.5
8	77.6	71.8	48.5	64.5
9	80	61.1	34.2	65.9
10	71.4	48	27.3	55
11	62	28.6	24.3	47.3
12	48.1	18.9	19.9	35.4
13	36.9	17.6	17	28.2
14	35.1	15.7	15.9	25.3
15	33.6	14.8	17.4	24.2
16	37.2	15.3	19.4	28
17	48.4	17.1	20.4	38
18	73	19.4	19.3	69.6
19	79.3	38.5	21.7	79.1
20	78.1	53.2	30.9	77.1
21	77.3	48	34.1	73.4
22	76.5	56.3	30.8	70.4
23	75	58.8	34.9	69.7
24	72.4	57.9	33.6	70.9

### Table 4. KAFB – Seasonal and Hourly Background NO2 Ambient Concentrations (µg/m³)

The NO2 modeling used the Tier 3 US EPA guidance together with appropriate in-stack ratios, background ozone and NO2 values, along with the EPA and AEHD-AQD suggested "OLMGROUP ALL", to ensure that the background ozone concentrations were applied to all emitted plumes.

## Model Results Discussion

The results of modeling of the KAFB Title V emission inventory, based on the AERMOD inputs previously described and tabulated above, are provided in Table 5. Again, the results provided in Table 5 are based on the inputs from Table 1 (parameters) and Table 3 (emission rates). Noted in Table 5 are the criteria pollutants modeled, the averaging period for which the modeled concentration is reported, the rank of that modeled concentration, and the ambient modeled concentration value for that rank, averaging period, and pollutant.

	Averaging	Reported	Maximum Modeled Concentration	Location o Concentration		Significant Impact Level	NAAQS	
Pollutant	Period	Value	$(\mu g/m^3)$	X (m)	Y (m)	$(\mu g/m^3)$	(µg/m ³ )	
	1-hour	H1H	56.7	354194	3877494	2,000		Not Significant - No further modeling
со		H2H	53.4	354194	3877494		40,000	
0	8-hour	H1H	24.1	354194	3877494	500		Not Significant - No further modeling
		H2H	22.8	354244	3877493		10,000	
	1-hour	H1H	52.8	361300	3878900	7.5		Significant - Further modeling needed
NO ₂		H8H	28.8	354194	3877494		188	
	Annual	H1H	0.83	354194	3877494	1	100	Not Significant - No further modeling
	24-hour	H1H	10.2	353926	3880659	5		Significant - Further modeling needed
PM10		H2H	9.03	353926	3880659		150	
	Annual	H1H	1.75	353926	3880659	1	50	Significant - Further modeling needed
	24-hour	H1H	10.2	353926	3880659	1.2		Significant - Further modeling needed
PM _{2.5}		H8H	6.8	353688	3880517		35	
	Annual	H1H	1.75	353926	3880659	0.3	12	Significant - Further modeling needed
	1-hour	H1H	5.64	354194	3877494	7.9		Not Significant – No further modeling
		H4H	5.24	354194	3877494		196	
	3-hour	H1H	3.93	354194	3877494	25		Not Significant - No further modeling
$SO_2$		H2H	3.06	354194	3877494		1,300	
	24-hour	H1H	1.14	354294	3877492	5		Not Significant - No further modeling
		H2H	1.06	354194	3877494		365	
	Annual	H1H	0.11	354194	3877494	1	80	Not Significant - No further modeling

Table 5. KAFB – Title V Emission Inventory Modeled Results

The rank or reported value is based on the form of the standard as some standards are not to be exceeded (H1H or highest first highest modeled value), whereas others are not to be exceeded more than once per year (H2H or highest second highest value). The statistical forms of the 1-hour NO2 and SO2 standards as well as the 24-hour PM2.5 standard require other ranked or reporting values including the highest-eighth-highest (H8H) value over a five-year period for both 1-hour NO2 and 24-hour PM2.5 and the highest-fourth-highest (H4H) value over a five-year period for the 1-hour SO2 standard.

Notwithstanding the forms of the respective air quality standards, as shown in Table 5, the Significant Impact Level (SIL) values are all based on the highest-first-highest (H1H) modeled concentration. The SIL value is a level at which the US EPA has determined that a modeled concentration cannot "cause or contribute" to an exceedance of a NAAQS or PSD increment level.

A comparison of the modeled concentrations from the KAFB Title V emission inventory to the respective Significant Impact Levels is shown. As shown, two of the five modeled criteria pollutants return modeled concentrations less than the respective SIL values (CO and SO2), whereas the remaining pollutants do not. Modeled KAFB Title V inventory impacts that are below the SIL values are exempt from further analysis as a showing of impacts below the respective SIL satisfies the requirements of demonstrating compliance with the NAAQS.

Therefore, no further modeling was completed for the emissions of CO or SO2. However, as the KAFB Title V emission inventory modeled concentrations of NO2, PM10, and PM2.5 did exceed the respective SIL thresholds, further modeling to include an off-site inventory of emitting sources was completed.

In establishing a distance to include for the off-site emission inventory the significant impact area (SIA) is typically determined. This SIA is an area wherein modeled concentrations likely exceed the respective SIL threshold and therefore areas wherein the modeled source could contribute to a violation of a NAAQS or PSD increment.

Off-site emission sources of the same criteria pollutant that has been modeled from a source and shown to be significant, are then typically included in any off-site inventory modeling assessment to demonstrate compliance from any aggregated (modeled source plus off-site inventory source) impacts together with a representative ambient background concentration.

The KAFB 1-hour NO2 SIA is depicted on Figure 7 along with the locations of the off-site emission inventory provided by AEHD-AQD. The SIA is the area within the isopleth (line of concentration concentration) corresponding with the 1-hour NO2 SIL value of 7.5  $\mu$ g/m³. Also shown on Figure 7 are the KAFB boundary receptor locations.

The KAFB 24-hour PM2.5 SIA is depicted on Figure 8 noting the much smaller area associated with the KAFB Title V PM2.5 emission inventory impacts. Notwithstanding the smaller areal extent of the PM2.5 SIA the KAFB impacts still extend outward into ambient air locations that include off-site inventory locations and therefore off-site inventory modeling was completed for both PM10 and PM2.5.

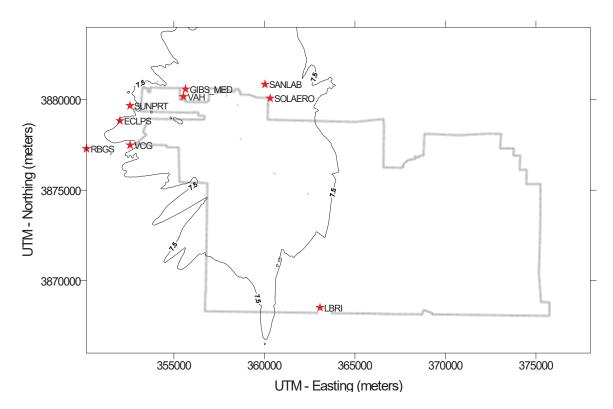



Figure 7. KAFB – Title V Emission Inventory 1-hour NO2 Significant Impact Area

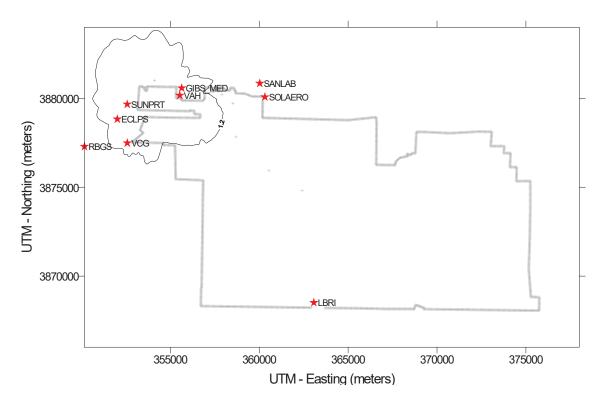



Figure 8. KAFB – Title V Emission Inventory 24-hour PM2.5 Significant Impact Area

## KAFB Title V and Off-Site Inventory Assessment

The AEHD-AQD has provided information on an appropriate off-site emission inventory of sources to include in a comprehensive assessment of air quality impacts within the KAFB impact affected area (SIAs). The off-site inventory of emission sources is provided in Table 6 and the locations of the inventory facilities have been previously shown on Figures 7 and 8.

Emissions of NOx, PM10, and PM2.5 from nine nearby facilities are tabulated (Table 6) along with the modeled exhaust parameters. As with the KAFB Title V inventory, not all of the off-site emission sources vent vertically through unhindered stacks, and some are identified as volume type sources.

The information provided in Table 6 includes the facility identifier as well as the model ID used in the AERMOD input stream along with the location of the emitting unit in UTM. The elevation of the source above mean sea level (msl) is shown and where not provided by the agency was determined from aerial imagery.

Also shown in Table 6 are the source type (point, pointhor, pointcap, volume) and the parameters associated with each of those source types. The volume sources include the height above grade level (agl) of the release as with the point source type entries, however, rather than an exhaust temperature and exit velocity, the appropriate headings for the volume sources are in units of meters and describe the initial lateral and vertical dimensions of the volume source. These are denoted as sigma-y-naught ( $\sigma_{y0}$ ), initial lateral dimension, and sigma-z-naught ( $\sigma_{z0}$ ), the initial vertical dimension.

The modeled emission rates are provided in the last three columns in Table 6 and the emission values as provided by the AEHD in units of grams per second (g/s). As with the modeling of NOx for the KAFB Title V emission inventory, the US EPA Tier 3 NOx modeling guidance was again used for the full inventory (KAFB Title V plus the off-site emission inventory).

This included again use of the hourly ozone date, NO2 seasonal and hourly background values, and instack NO2/NOx ratios. The ratios used for the KAFB emission inventory were the same and the in-stack ratios used for the off-site inventory are presented in Table 7 and are based on AEHD-AQD guidance.

The aggregated NOx, PM10, and PM2.5 emission inventories from the KAFB Title V inventory (as presented in Table 1 and Table 3) and the off-site source inventory (as presented in Table 6) were combined into a single AERMOD input file and iterated using the full five-years of meteorological data and the full grid of receptors as shown on Figure 5.

Results of the aggregated inventory (KAFB plus off-site) for NO2 are provide in Table 8 along with the individual source modeled concentrations. As the NO2 modeling invoked the seasonal/hourly NO2 background values, the maximum full facility modeling results include the contribution of background already. The maximum modeled background concentration as calculated in AERMOD was 80 micrograms per cubic meter ( $\mu$ g/m³). This compares with the single maximum 1-hour value provided by AEHD of 84.6  $\mu$ g/m³ for Del Norte. Annual values were not modeled as the KAFB Title V inventory annual NO2 SIL was not exceeded per the results in Table 5.

			Loca	tion UTM Zo:	ne 13	1	Modeled Exh	aust Paramete	rs	Modeled Emission Rate (g/s)		
			Loca			1	Temp	Velocity	15	Widdeled		ate (g/s)
			Easting	Northing	Elevation	Height	(K); σ _{y0}	(m/s); σ	Diameter			
Facility	Model ID	Type	(m)	(m)	(m msl)	(m)	(m)	_{z0} (m)	(m)	NOx	PM10	PM25
LBRI	LBRI B4	pointcap	362899.0	3868454.0	1728.2	5.79	505.37	2.757	0.254	0.02016	0.00151	0.00151
LDIG	LBRI B5	pointcap	363108.0	3868522.0	1728.2	5.79	505.37	2.000	0.526	0.09450	0.00945	0.00945
	LBRI B6	pointcap	363106.0	3868514.0	1728.2	7.32	505.37	2.000	0.526	0.09450	0.00945	0.00945
	LBRI B7	pointcap	363107.0	3868538.0	1728.2	10.36	505.37	2.413	0.526	0.11340	0.01134	0.01134
	LBRI TO	point	363136.0	3868524.0	1728.2	10.87	1033.15	2.757	0.406	0.02520	0.00189	0.00189
		1										
RBGS	RBGS	point	350169.6	3877287.7	1538.3	15.24	855.93	29.962	5.182	36.30000	3.89340	3.89340
		•										
SolAero	SOLAERO A1	point	360343.0	3880087.0	1669.1	5.18	505.37	42.977	0.203	0.05922	0.00113	0.00113
	SOLAERO A2	point	360343.0	3880091.0	1669.1	5.18	505.37	42.977	0.203	0.05922	0.00113	0.00113
	SOLAERO RB	point	360300.0	3880076.0	1669.1	12.19	394.26	14.783	0.366	0.03402	0.00064	0.00064
	SOLAERO_01	point	360316.0	3880069.0	1669.1	12.19	449.82	24.293	0.152	0.01260	0.00024	0.00024
	SOLAERO_O2	point	360315.0	3880040.0	1669.1	12.19	449.82	13.533	0.203	0.02016	0.00038	0.00038
	SOLAERO_PB	point	360282.0	3880073.0	1669.1	12.19	291.48	3.078	0.972	0.00844	0.00020	0.00020
Sandia	SANLAB_B1	pointcap	360023.8	3880811.0	1667.3	1.80	588.00	10.000	0.240	0.07560	0.00630	0.00630
Labs												
	SANLAB_B2	pointcap	360023.3	3880812.7	1667.3	1.80	588.00	10.000	0.240	0.07560	0.00630	0.00630
	SANLAB_H1	point	360019.7	3880867.3	1667.3	1.80	588.00	10.000	0.240	0.01008	0.00126	0.00126
	SANLAB_H2	point	360020.6	3880866.0	1667.3	1.80	588.00	10.000	0.240	0.01008	0.00126	0.00126
	SANLAB_H3	point	360024.2	3880862.4	1667.3	1.80	588.00	10.000	0.240	0.01008	0.00126	0.00126
	SANLAB_H4	point	360025.3	3880861.3	1667.3	1.80	588.00	10.000	0.240	0.01008	0.00126	0.00126
	SANLAB_H5	point	360040.5	3880835.5	1667.3	1.80	588.00	10.000	0.240	0.01008	0.00126	0.00126
	SANLAB_H6	point	360041.0	3880834.2	1667.3	1.80	588.00	10.000	0.240	0.01008	0.00126	0.00126
	SANLAB_H7	point	360042.6	3880829.2	1667.3	1.80	588.00	10.000	0.240	0.01008	0.00126	0.00126
	SANLAB_BAG	pointhor	359408.2	3874086.0	1650.0	3.63	0.00	4.602	0.396	0	0.63000	0.63000
Sunport	SUNPRT BLR	pointcap	352574.6	3879666.5	1622.2	16.15	510.93	2.621	0.762	0.33012	0.03402	0.03402
Suipon	DLK	Poincap	552574.0	5677000.5	1022.2	10.15	510.75	2.021	0.702	0.55012	0.00-02	0.00-02
VA	VAH BLR1	point	355554.0	3880059.0	1630.4	11.58	485.37	16.429	0.509	0.25956	0.02016	0.02016
Hospital	DERI	Point	22222 110	200000000	1050.1	11.00		101129	0.009	0.20000	0.02010	0.02010
	VAH_BLR2	point	355557.0	3880052.0	1630.4	11.58	485.37	16.429	0.509	0.25956	0.02016	0.02016
	VAH_BLR3	point	355558.0	3880045.0	1630.4	11.58	485.37	16.429	0.509	0.25956	0.02016	0.02016

Table 6. KAFB – Title V – Off-Site Emission Modeled Inventory Parameters

			Loca	tion UTM Zo	ne 13	Ν	Modeled Exh	aust Paramete	ers	Modelee	d Emission R	ate (g/s)
					-		Temp	Velocity				
			Easting	Northing	Elevation	Height	(K); σ _{y0}	(m/s); σ	Diameter			
Facility	Model ID	Туре	(m)	(m)	(m msl)	(m)	(m)	z0 (m)	(m)	NOx	PM10	PM25
	VAH DRY1	point	355569.0	3880130.0	1630.4	12.19	366.48	15.240	0.152	0.03150	0.00239	0.00239
	VAH DRY2	point	355572.0	3880119.0	1630.4	12.19	366.48	15.240	0.152	0.03150	0.00239	0.00239
	VAH GEN9	point	355352.0	3880587.0	1630.4	4.57	955.37	128.930	0.076	0.06174	0.00025	0.00025
	_											
Gibson Medical	GIBS_MED	point	355640.0	3880578.0	1622.8	8.78	435.93	5.791	0.509	0.13860	0.07560	0.07560
Eclipse	ECLPS 6a	point	352036.0	3878862.0	1619.7	19.81	322.04	10.058	1.280	0.10206	0	0
Lenpse	ECLPS 6b	point	352036.0	3878802.0	1619.7	19.81	322.04	10.058	1.280	0.10206	0	0
	ECLPS 8a	point	352008.0	3878808.0	1619.7	19.81	322.04	1.798	0.914	0.04032	0	0
	ECLPS 8b	point	352008.0	3878808.0	1619.7	19.81	297.04	7.193	0.914	0.04032	0	0
	ECLPS 8c	point	352008.0	3878853.0	1619.7	19.81	322.04	1.798	0.914	0.04032	0	0
	ECLPS 8d	point	352008.0	3878853.0	1619.7	19.81	297.04	7.193	0.914	0.04032	0	0
		1										
VCG	VCG CBPE	point	352576.2	3877483.0	1620.3	3.66	761.87	46.177	0.204	0.66402	0.01890	0.01890
	VCG CMBH	pointhor	352577.2	3877490.0	1620.3	2.44	0.00	13.716	0.710	0	0.12424	0.12424
	_											
	VCG FH1	volume	352601.3	3877488.0	1620.3	4.00	1.16	2.33		0	0.01900	0.00290
	VCG FH2	volume	352601.3	3877483.0	1620.3	4.00	1.16	2.33		0	0.01900	0.00290
	VCG FH3	volume	352601.5	3877478.1	1620.3	4.00	1.16	2.33		0	0.01900	0.00290
	VCG FH4	volume	352601.1	3877473.3	1620.3	4.00	1.16	2.33		0	0.01900	0.00290
	VCG TP1	volume	352598.9	3877487.6	1620.3	2.00	0.47	0.93		0	0.00059	0.00016
	VCG TP2	volume	352599.1	3877483.0	1620.3	2.00	0.47	0.93		0	0.00059	0.00016
	VCG_TP3	volume	352599.1	3877478.3	1620.3	2.00	0.47	0.93		0	0.00059	0.00016
	VCG_TP4	volume	352598.3	3877473.9	1620.3	2.00	0.47	0.93		0	0.00059	0.00016
	VCG_AB	volume	352580.1	3877480.8	1620.3	4.00	1.16	2.33		0	0.07625	0.01159
	VCG_WH	volume	352580.1	3877480.8	1620.3	2.00	1.16	2.33		0	0.00238	0.00063
	VCG_SP1	volume	352634.5	3877496.3	1620.3	2.44	8.50	2.27		0	0.03325	0.00508
	VCG_SP2	volume	352634.7	3877480.4	1620.3	2.44	8.50	2.27		0	0.03325	0.00508
	VCG_SP3	volume	352634.5	3877464.6	1620.3	2.44	8.50	2.27		0	0.03325	0.00508
	VCG_HR1_1	volume	352548.0	3877525.0	1620.3	3.40	6.05	3.16		0	0.00400	0.00040
	VCG_HR1_2	volume	352553.1	3877513.0	1620.3	3.40	6.05	3.16		0	0.00400	0.00040
	VCG_HR1_3	volume	352558.1	3877501.1	1620.3	3.40	6.05	3.16		0	0.00400	0.00040
	VCG_HR1_4	volume	352569.7	3877497.7	1620.3	3.40	6.05	3.16		0	0.00400	0.00040
	VCG_HR1_5	volume	352582.6	3877497.4	1620.3	3.40	6.05	3.16		0	0.00400	0.00040
	VCG_HR1_6	volume	352595.1	3877499.2	1620.3	3.40	6.05	3.16		0	0.00400	0.00040
	VCG_HR1_7	volume	352598.6	3877510.2	1620.3	3.40	6.05	3.16		0	0.00400	0.00040
	VCG_HR1_8	volume	352595.3	3877522.8	1620.3	3.40	6.05	3.16		0	0.00400	0.00040
	VCG_HR2_1	volume	352595.0	3877524.0	1620.3	3.40	6.05	3.16		0	0.00475	0.00048

			Loca	Location UTM Zone 13			Modeled Exha	aust Paramete	Modeled Emission Rate (g/s)			
							Temp	Velocity				
			Easting	Northing	Elevation	Height	(K); σ _{y0}	(m/s); σ	Diameter			
Facility	Model ID	Туре	(m)	(m)	(m msl)	(m)	(m)	_{z0} (m)	(m)	NOx	PM10	PM25
	VCG_HR2_2	volume	352602.0	3877513.1	1620.3	3.40	6.05	3.16		0	0.00475	0.00048
	VCG_HR2_3	volume	352609.4	3877502.4	1620.3	3.40	6.05	3.16		0	0.00475	0.00048
	VCG_HR2_4	volume	352614.2	3877490.9	1620.3	3.40	6.05	3.16		0	0.00475	0.00048
	VCG_HR2_5	volume	352614.6	3877477.9	1620.3	3.40	6.05	3.16		0	0.00475	0.00048
	VCG_HR2_6	volume	352615.0	3877466.0	1620.3	3.40	6.05	3.16		0	0.00475	0.00048

Facility	Model ID	NO2/NOx Ratio
LBRI	LBRI_B4	0.2
	LBRI_B5	0.2
	LBRI_B6	0.2
	LBRI_B7	0.2
	LBRI_TO	0.3
RBGS	RBGS	0.2
SolAero	SOLAERO_A1	0.3
	SOLAERO_A2	0.3
	SOLAERO_RB	0.3
	SOLAERO_01	0.3
	SOLAERO_02	0.3
	SOLAERO_PB	0.3
Sandia Labs	SANLAB B1	0.2
	SANLAB_B2	0.2
	SANLAB H1	0.3
	SANLAB H2	0.3
	SANLAB H3	0.3
	SANLAB H4	0.3
	SANLAB H5	0.3
	SANLAB H6	0.3
	SANLAB H7	0.3
	SANLAB BAG	0.2
Sunport	SUNPRT BLR	0.2
VA Hospital	VAH BLR1	0.2
	VAH BLR2	0.2
	VAH BLR3	0.2
	VAH DRY1	0.3
	VAH DRY2	0.3
	VAH GEN9	0.3
Gibson Medical	GIBS MED	0.2
Eclipse	ECLPS 6a	0.2
1	ECLPS 6b	0.2
	ECLPS 8a	0.2
	ECLPS 8b	0.2
	ECLPS 8c	0.2
	ECLPS 8d	0.2
VCG	VCG CBPE	0.3
	VCG CMBH	0.3

## Table 7. KAFB – Off-Site NO2 Emission Inventory In-stack NO2/NOx Ratios

				Modeled	Location of Modeled Concentration UTM Zone 16		Ambient Background	Aggregate Impact Facility plus		Aggregate Impact
Modeled Source	Criteria Pollutant	Averaging Period	Averaging Rank	Concentration (µg/m ³ )	Easting (m)	Northing (m)	Concentration (µg/m ³ )	Background (µg/m ³ )	NAAQS (µg/m ³ )	Percentage of NAAQS
KAFB + Off- Site Inventory	NO ₂	1-hour	H8H	156.0	355365	3880009		156.0	188	83.0%
KAFB				28.8	354194	3877494	84.6	113.4		
LBRI				50.3	363034	3868217	84.6	134.9		
RBGS				15.9	362412	3874806	84.6	100.5		
SolAero				34.8	360400	3880100	84.6	119.4		
Sandia Labs				73.3	360000	3880700	84.6	157.9		
Sunport				16.2	352600	3879600	84.6	100.8		
VA Hospital				89.6	355700	3880000	84.6	174.2		
Gibson Medical				15.1	355700	3880500	84.6	99.7		
Eclipse				8.8	352000	3879000	84.6	93.4	<u> </u>	
VCG				36.3	352838	3877523	84.6	120.9		

## Table 8. KAFB – Title V – Off-Site NO2 Emission Modeled Inventory Results

Remembering that the full grid of receptors as depicted on Figure 5 was used in the aggregated NO2 emission inventory (KAFB plus off-site sources) and knowing that many of the receptor locations extended over the locations of most of the off-site inventory sources, a preliminary run of some of the receptor/source locations suggested compromised modeling results because of receptor locations atop modeled off-site inventory locations.

Therefore, and as with the discussion of receptors and the Lovelace (LBRI) facility boundary, and to ensure that the modeled concentrations for a particular facility were not being reported within air that would not be deemed "ambient" from that facility perspective, the receptor grid was reviewed, and receptors located atop a modeled facility property were removed from the modeling grid and the modeling analysis. This resulted in the removal of 167 receptor locations (140 of them associated with the VCG operational area and boundary) to avoid calculating concentrations what for that modeled source would not need to be reported as it would not be considered ambient air.

These 167 receptor locations are depicted on Figure 9 along with the location of the nearby off-site inventory emitting facilities. Not all receptors that were found to lay atop these facilities were removed. For example, the VCG facility boundary as provided by the AEHD, is equivalent to the Albuquerque Sunport International airport boundary. That boundary is extensive and so only those receptors within the boundary within a certain distance from the VCG operations area were removed.

The 167 receptors were retained in the modeling files but were not accessed in the modeling runs through use of the AERMOD "**" prefacing text limiter and can be verified by AEHD-AQD as appropriate removals from the receptor field. Noting again that these 167 receptor locations had already been modeled to account for the KAFB impacts on those off-site facility receptor locations and for many (as shown on Figures 7 and 8) were not significant.

The results provided in Table 8 do show that modeling of the KAFB Title V emission inventory along with an off-site emission inventory, together with appropriate in-stack NO2/NOx ratios, background ozone and seasonal/hourly NO2 data, application of the ozone-limiting-method, and more appropriate "ambient" receptors for the modeled off-site inventory, combined, return modeled concentrations less than the 1-hour NO2 NAAQS.

The maximum aggregate modeled concentration shown in Table 8 (top row) is located along the KAFB boundary shared with the VA Hospital and represents the overlap of the KAFB and off-site inventory impacts at that location.

Modeling of the off-site particulate emitting inventory was completed using the same set of receptors as used in the off-site NO2 modeling. The inputs used are those provided in Table 6 under the "PM10" and "PM2.5" columns.

The results of the PM2.5 inventory modeling are shown in Table 9 and are the modeled 24-hour highesteighth-highest PM2.5 concentration. Results are provided for both the collective KAFB plus Off-Site emitting inventory (top row) and for each of the individual modeled facilities and its associated PM2.5 emission inventory. Also provided in Table 9 are the impact locations and the suggested ambient background concentration (as provided by AEHD-AQD).

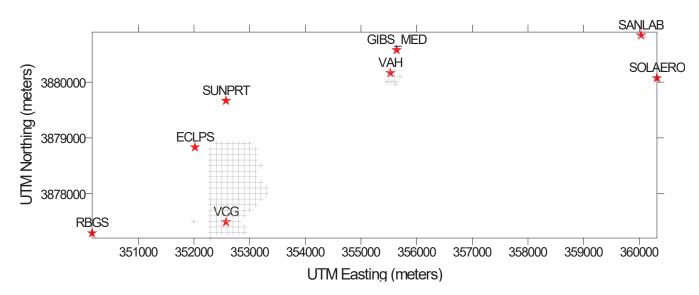



Figure 9. KAFB and Off-Site Emission Inventory – Location of Receptors Removed from the Off-Site Inventory Modeling Runs

# Table 9. KAFB – Title V – Off-Site PM2.5 24-hour Highest-Eighth-Highest Individual Facility Modeled Results

	Modeled Concentration		of Modeled n UTM Zone 16	Ambient Background Concentration	Aggregate Impact Plus Background (µg/m ³ )	
Modeled Source	$(\mu g/m^3)$	Easting (m)	Northing (m)	(µg/m ³ )		
KAFB + Off- Site Inventory	8.3	352500	3877200	22	30.3	
KAFB	6.8	353688	3880516	22	28.8	
LBRI	0.9	363801	3868216	22	22.9	
RBGS	0.3	350500	3877000	22	22.3	
SolAero	0.1	360400	3880100	22	22.1	
Sandia Labs	1.7	360000	3880700	22	23.7	
Sunport	0.5	352600	3879500	22	22.5	
VA Hospital	2.0	355624	3879222	22	24.0	
Gibson Medical	2.8	355500	3880600	22	24.8	
Eclipse	0.0			22	22.0	
VCG	7.9	352500	3877200	22	29.9	

The particulate matter full inventory modeling results are provided in Table 10. As shown, the modeled inventory results added to the ambient background values returns combined concentrations less than the respective PM10 and PM2.5 NAAQS.

The findings of the modeling for both the KAFB Title V emission inventory alone and through the modeling of the combined KAFB and off-site AEHD provided inventory along with the addition of appropriate ambient background concentrations return modeled concentrations either less than respective SIL values (KAFB sources only) or less than applicable NAAQS. Therefore, the KAFB Title V emission inventory will not adversely impact nearby airshed ambient air concentrations and are protective of the NAAQS in the vicinity of the KAFB operations.

				Location of Modeled			Aggregate		
				Concentration UTM Zone 16		Ambient	Impact		Aggregate
			Modeled		<b>T</b>	Background	Facility plus		Impact
Criteria	Averaging	Averaging	Concentration			Concentration	Background	NAAQS	Percentage of
Pollutant	Period	Rank	$(\mu g/m^3)$	Easting (m)	Northing (m)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	NAAQS
PM10	24-hour	H2H	29.0	352500	3877200	42	71.0	150	47.3%
PM _{2.5}	24-hour	H8H	8.3	352500	3877200	22	30.3	35	86.6%
	Annual	H1H	2.1	352500	3877200	8.4	10.5	12	87.5%

### Table 10. KAFB – Title V – KAFB Plus Off-Site Particulate Matter Emission Modeled Inventory Results

This page intentionally left blank.

From:	Pomo, Elizabeth
То:	CUEVAS, ANDRIA R CIV USAF AFGSC 377 MSG/CEIEC; Tavarez, Isreal L.; Munoz-Dyer, Carina G.
Cc:	CLARK, MELISSA B GS-14 USAF AFGSC 377 MSG/CEI; VILLALOBOS, KEVIN R GS-13 USAF AFMC AFCEC/CZOW; kafbemctr; Stonesifer, Jeff W.; Tumpane, Kyle
Subject:	RE: Request Extension: Permit 527-RN1 Renewal Application
Date:	Friday, 21 January, 2022 13:54:43
Attachments:	image001.png

Good afternoon Andria,

An extension has been granted. Please wait to submit the Title V renewal application until the recent modeling questions have been answered.

Thank you,



Elizabeth M. Pomo, MPH environmental health scientist | environmental health department o 505.768.2638 m 505.239.7094 cabq.gov/environmentalhealth/

From: CUEVAS, ANDRIA R CIV USAF AFGSC 377 MSG/CEIEC <andria.cuevas.1@us.af.mil>
Sent: Wednesday, January 19, 2022 11:39 AM
To: Tavarez, Isreal L. <ITavarez@cabq.gov>; Munoz-Dyer, Carina G. <cmunoz-dyer@cabq.gov>; Pomo, Elizabeth <epomo@cabq.gov>
Cc: CLARK, MELISSA B GS-14 USAF AFGSC 377 MSG/CEI <melissa.clark.8@us.af.mil>; VILLALOBOS, KEVIN R GS-13 USAF AFMC AFCEC/CZOW <kevin.villalobos@us.af.mil>; kafbemctr
<kafbemctr@navarro-inc.com>
Subject: Request Extension: Permit 527-RN1 Renewal Application

Good Morning Isreal, Carina, Liz!

Kirtland AFB is due to submit Permit 527-RN1 Title V renewal application (due 22 January 2022). Although the application is at the Wing pending the Commander's signature, we are experiencing some administrative issues with COVID protocol to telework, and we are having some difficulties with obtaining the notary certification page. I am respectfully requesting if KAFB may obtain an extension to submit the complete/signed application by Friday, 27 January 2022.

I appreciate your consideration...THX! -Andria

(Happy New Year!)

From:	Stonesifer, Jeff W.
To:	CUEVAS, ANDRIA R CIV USAF AFGSC 377 MSG/CEIEC
Cc:	kafbemctr; Lutz, Jon; Munoz-Dyer, Carina G.; Pomo, Elizabeth; CLARK, MELISSA B GS-14 USAF AFGSC 377 MSG/CEI; Tumpane, Kyle; VILLALOBOS, KEVIN R GS-13 USAF AFMC AFCEC/CZOW
Subject:	RE: Permit 527-RN1 Renewal Application Modeling Protocol
Date:	Tuesday, 22 February, 2022 10:49:08
Attachments:	image001.png image002.png VitalCombustionROI.BST VitalPMROI.BST

Andria,

The Air Quality Program has determined that none of the landfills at Kirtland Air Force Base need to be included in the modeling for the Title V renewal.

The modeling files for VCG's concrete batch plant on Airport property are attached.

Regards,



## **JEFF STONESIFER**

senior environmental health scientist | environmental health department o 505.767.5624 m 505.250.2689 cabq.gov/environmentalhealth/

From: CUEVAS, ANDRIA R CIV USAF AFGSC 377 MSG/CEIEC <andria.cuevas.1@us.af.mil> Sent: Thursday, February 3, 2022 2:09 PM

To: Stonesifer, Jeff W. <JStonesifer@cabq.gov>

**Cc:** kafbemctr <kafbemctr@navarro-inc.com>; Lutz, Jon <tlutz@cabq.gov>; Munoz-Dyer, Carina G. <cmunozdyer@cabq.gov>; Pomo, Elizabeth <epomo@cabq.gov>; CLARK, MELISSA B GS-14 USAF AFGSC 377 MSG/CEI <melissa.clark.8@us.af.mil>; Tumpane, Kyle <ktumpane@cabq.gov>; VILLALOBOS, KEVIN R GS-13 USAF AFMC AFCEC/CZOW <kevin.villalobos@us.af.mil>

Subject: RE: Permit 527-RN1 Renewal Application Modeling Protocol

#### Hi Jeff!

After reviewing some documents, and discussion with our Restoration team it was determined that the reference to "general refuse" is limited to the construction and demolition waste, and the municipal solid waste (no other waste). Also, the modeler is respectfully requesting a copy of the VCG modeling files.

Please let me know if you have any additional questions/concerns.

I appreciate the help...THX!

#### -Andria

From: Stonesifer, Jeff W. <JStonesifer@cabq.gov>
Sent: Wednesday, February 2, 2022 11:56 AM
To: CUEVAS, ANDRIA R CIV USAF AFGSC 377 MSG/CEIEC <andria.cuevas.1@us.af.mil>
Cc: kafbemctr <kafbemctr@navarro-inc.com>; Lutz, Jon <tlutz@cabq.gov>; Munoz-Dyer, Carina G. <cmunozdyer@cabq.gov>; Pomo, Elizabeth <epomo@cabq.gov>; CLARK, MELISSA B GS-14 USAF AFGSC 377 MSG/CEI
<melissa.clark.8@us.af.mil>; Tumpane, Kyle <ktumpane@cabq.gov>; VILLALOBOS, KEVIN R GS-13 USAF AFMC
AFCEC/CZOW <kevin.villalobos@us.af.mil>

Subject: [Non-DoD Source] RE: Permit 527-RN1 Renewal Application Modeling Protocol

Andria,

Air Quality Program staff are not familiar with the term "general refuse". What is meant by general refuse? Do you have a definition of the term or possibly a list of items that fall under the category of general refuse? Once it has been determined if general refuse is municipal solid waste or not, we may have additional questions.

The permit for the concrete batch plant located on the Sunport property allows for 24/7 operation. They were able to pass modeling this way and so didn't bother to limit hours of operation in the modeling. No data on actual hours of operation for the VCG plant is available. PM10 emissions from the central mixer baghouse may indeed be somewhat greater than PM2.5 emissions. Once again , VCG was able to pass modeling without differentiating between PM10 and PM2.5 emissions from the baghouse. If VCG is causing problems in getting the Kirtland modeling to pass, Air Quality Program staff are available to discuss the situation with Kirtland's environmental team. Would it help Kirtland's team to have the actual modeling files from the VCG modeling? We can certainly provide those files including the modeling results.

Regards,



## **JEFF STONESIFER**

senior environmental health scientist | environmental health department o 505.767.5624 m 505.250.2689 cabq.gov/environmentalhealth/

From: CUEVAS, ANDRIA R CIV USAF AFGSC 377 MSG/CEIEC <<u>andria.cuevas.1@us.af.mil</u>> Sent: Wednesday, January 12, 2022 12:11 PM

To: Stonesifer, Jeff W. <<u>JStonesifer@cabq.gov</u>>

**Cc:** kafbemctr <<u>kafbemctr@navarro-inc.com</u>>; Lutz, Jon <<u>tlutz@cabq.gov</u>>; Munoz-Dyer, Carina G. <<u>cmunoz-dyer@cabq.gov</u>>; Pomo, Elizabeth <<u>epomo@cabq.gov</u>>; CLARK, MELISSA B GS-14 USAF AFGSC 377 MSG/CEI <<u>melissa.clark.8@us.af.mil</u>>; Tumpane, Kyle <<u>ktumpane@cabq.gov</u>>; VILLALOBOS, KEVIN R GS-13 USAF AFMC AFCEC/CZOW <<u>kevin.villalobos@us.af.mil</u>>

Subject: FW: Permit 527-RN1 Renewal Application Modeling Protocol