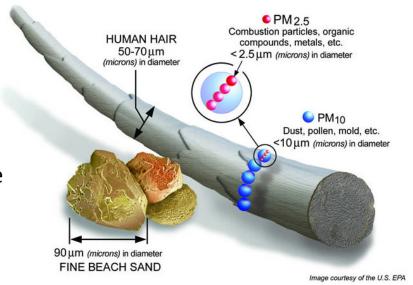
Bernalillo County Wood Burning Assessment

Dan Gates

City of Albuquerque, Environmental Health Department

Overview


- Definitions
- What we know about wood burning
 - Local impacts
 - Wood Burning Pollutants
 - Hazardous Air Pollutants
- National Emission Inventory (NEI) Data
 - Using the NEI to evaluate pollutants and pollution sources
- Local Monitoring Data
 - The Local Network
 - What do we see in the data?
- Conclusion
- Potential next steps
- Open Discussion

Definitions

- What is Biomass?
- Biomass is fuel that is developed from organic materials.
 Some examples of biomass fuels are:
 - scrap lumber;
 - forest debris;
 - certain crops;
 - manure; and
 - some types of waste residues.

https://www.reenergyholdings.com/renewable-energy/what-is-biomass/

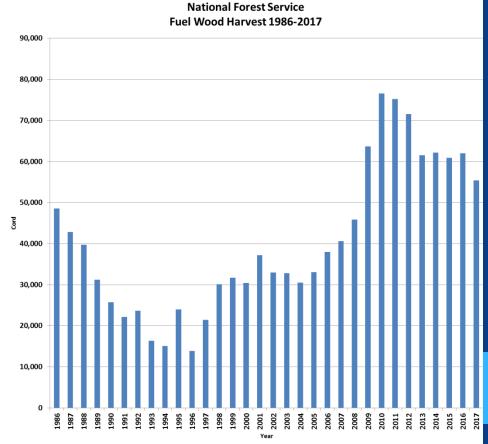
- For this Assessment biomass includes burning:
 - wood for heat, cooking or ambiance
 - trash and construction waste
 - yard waste such as leaves, branches

- What is PM_{2.5}?
 - PM_{2.5} is particulate matter 2.5 microns and smaller

What we know about Wood Burning

Wood burning impacts indoor air quality

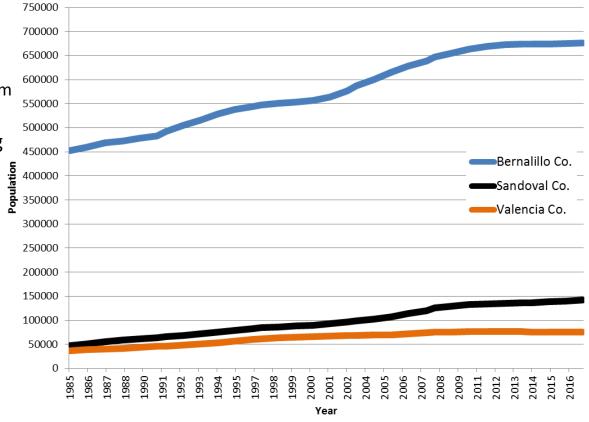
- The NM Department of Health notes that "[d]uring the wintertime, residential wood smoke is the main source of fine particle pollution causing poor air quality inside the home." 1
- California ARB and EPA Study: ". . . Indicates that the indoor environment is not highly effective at reducing exposures to black carbon from residential wood smoke. . ."(page 93-94)²


Local data show increases in

- Pollutant values as the temperature decreases
 - Starts in October/November, Ends by April
- Markers of biomass burning in the winter
 - Black Carbon (BC)
 - Potassium (K)
 - $PM_{2.5}$

Human Activities

- Wood burning
 - In 1985, 35,000-40,000 cords of wood were burned in Albuquerque¹
 - Based on average weight = 100,000,000 to 184,000,000 lbs/season in 1985.
 - In 1986, 197,198 cords of wood were harvested in New Mexico²
 - National Forest Service alone saw a 12.3% increase in fuelwood harvested from 1986 to 2017²


Total cord harvest calculated from New Mexico forests only, Cibola, Gila, Lincoln, and Santa Fe National Forests.

^{1.} Residential Space Heating with Wood: Efficiency and Environmental Performance, Urban Consortium Energy Task Force, City of Albuquerque, Energy Management Division, December 1985.

^{2.} New Mexico's 1986 Fuelwood Harvest., McLain, William H., United States Department of Agriculture Forest Service, Intermountain Research Station, April 1989, https://archive.org/stream/newmexicos1986fu60mcla#page/n3/mode/2up

- 1985-2017 Bernalillo County grew 49.5%, Sandoval County grew 203.8%, Valencia County grew 107.3%
- The three counties added 359,147 residents from 1985-2017¹, growing from 536,073 to 895,220
 - Commuting Time & Vehicle traffic
 - Transport
 - what's coming in from outside the county
 - Agricultural burning
 - Other?
 - If we use the Federal average the 3 Counties would have 86,836 wood burning households.²

^{1.} https://factfinder.census.gov

^{2.} https://www.eia.gov/todayinenergy/detail.php?id=15431

Wood Burning Pollution

- Molds* such as Thermoactinomyces vulgaris, Aspergillus fumigatus and Cladosporium herbarium
- 1993 EPA identified over 70 pollutants from wood burning¹
 - Trace elements including heavy metals such as chromium and lead
 - Polycyclic Aromatic Hydrocarbons (PAHs)

(PAHs) are a group of more than 100 different chemicals that are released from burning coal, oil, gasoline, trash, tobacco, wood, or other organic substances such as charcoal-broiled meat. (https://toxtown.nlm.nih.gov)

 A Univ. of Stockholm, Sweden study found that ". . . wood-burning homes had . . . roughly 4 times the total PAH cancer potency, compared to non-wood-burning homes."²

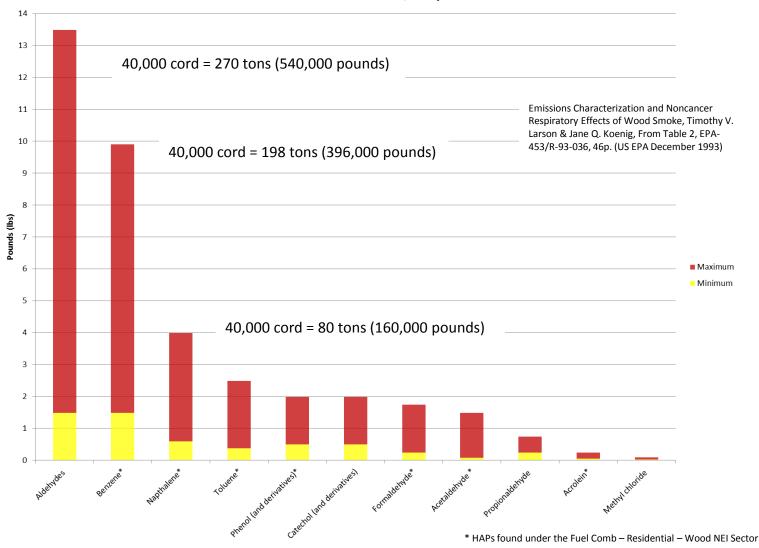
^{*} Interstitial Lung Disease and Domestic Wood Burning: Ramage, Roggli, bell and Piantadosi, AM REV RESPIR DIS 1988; 137:1229-1232

^{1.} Emissions Characterization and Noncancer Respiratory Effects of Wood Smoke, Timothy V. Larson & Jane Q. Koenig, From Table 2, EPA-453/R-93-036, 46p. (US EPA December 1993)

^{2.} Indoor Levels of Polycyclic Aromatic Hydrocarbons in Homes with or without Wood Burning for Heating, Pernilla Gustafson, Conny Östman and Gerd Sällsten, Department of Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden, 2008

More about PAH

- One primary PAH is Benzo(a)pyrene which is produced from the incomplete combustion of organic matter.
 - A Norwegian Institute of Public Health study states: "Benzo(a)pyrene is the most carcinogenic PAH. . . the higher content of PAHs in the wood smoke particles indicates a higher mutagenic potential compared to vehicle exhaust."¹
 - An EPA study estimates that wood stoves, on average, emit 432 μg/hour of benzo[a]pyrene.²
 - You would have to light 27,333 cigarettes to emit as much benzo(a)pyrene as burning one kilogram (2.2 lbs) of wood.³ If you smoked one pack per day it would take 3.75 years to smoke 27,333 cigarettes.

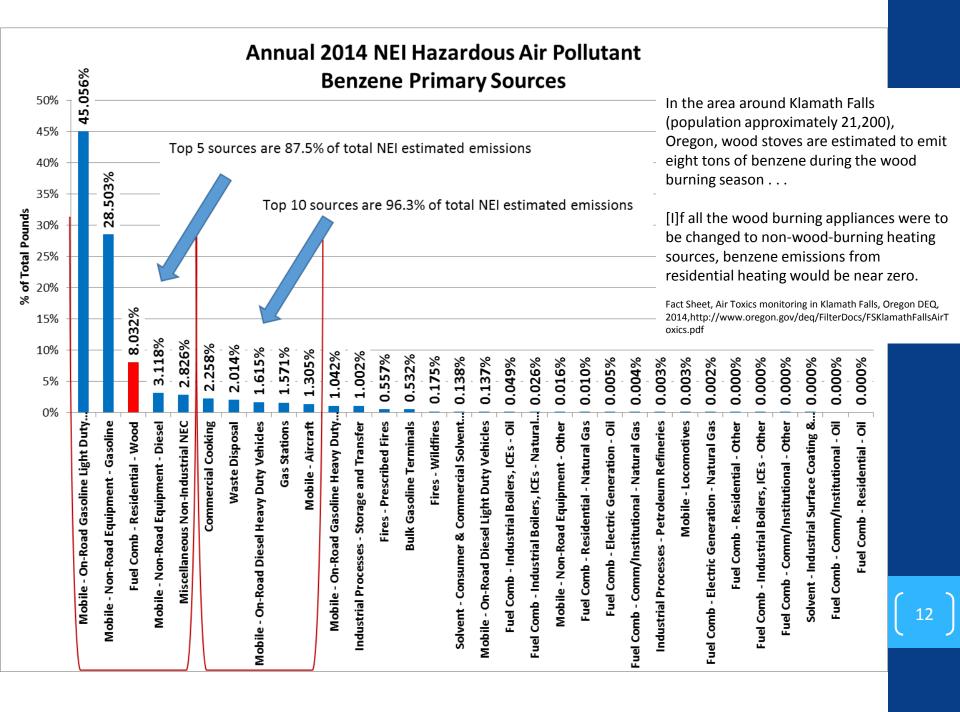

^{1.} Physicochemical characterisation of combustion particles from vehicle exhaust and residential wood smoke Anette Kocbach1, Yanjun Li, Karl E Yttri, Flemming R Cassee, Per E Schwarze1 and Ellen Namork, Division of Environmental Medicine, Norwegian Institute of Public Health, http://www.particleandfibretoxicology.com/content/3/1/1

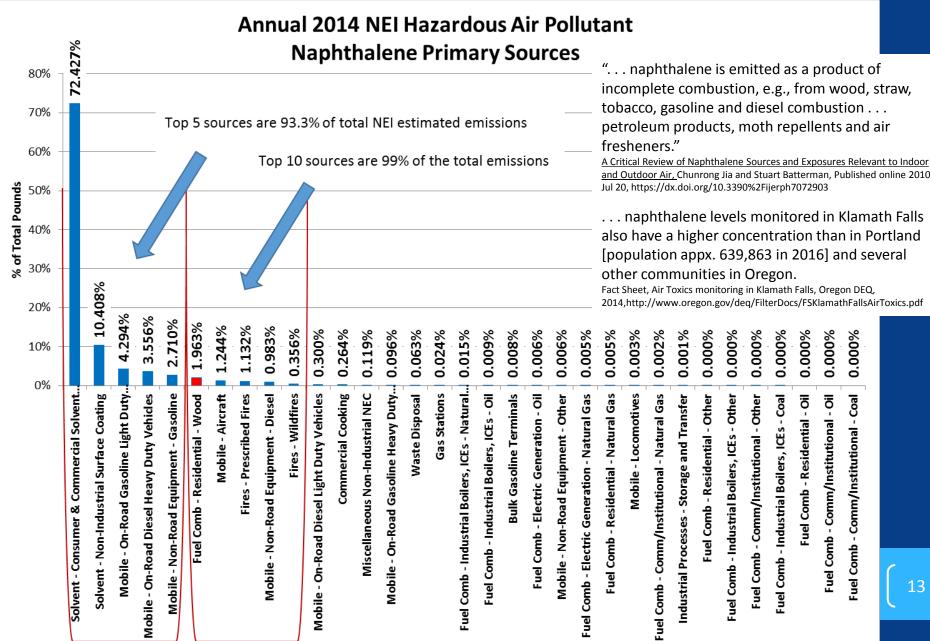
 $^{2. \} LONG-TERM\ PERFORMANCE\ OF\ EPA-CERTIFIED\ PHASE\ 2\ WOODSTOVES,\ KLAMATH\ FALLS\ AND\ PORTLAND\ OREGON:\ 1998-1999,\ EPA/600/R-00/100,\ November\ 2000$

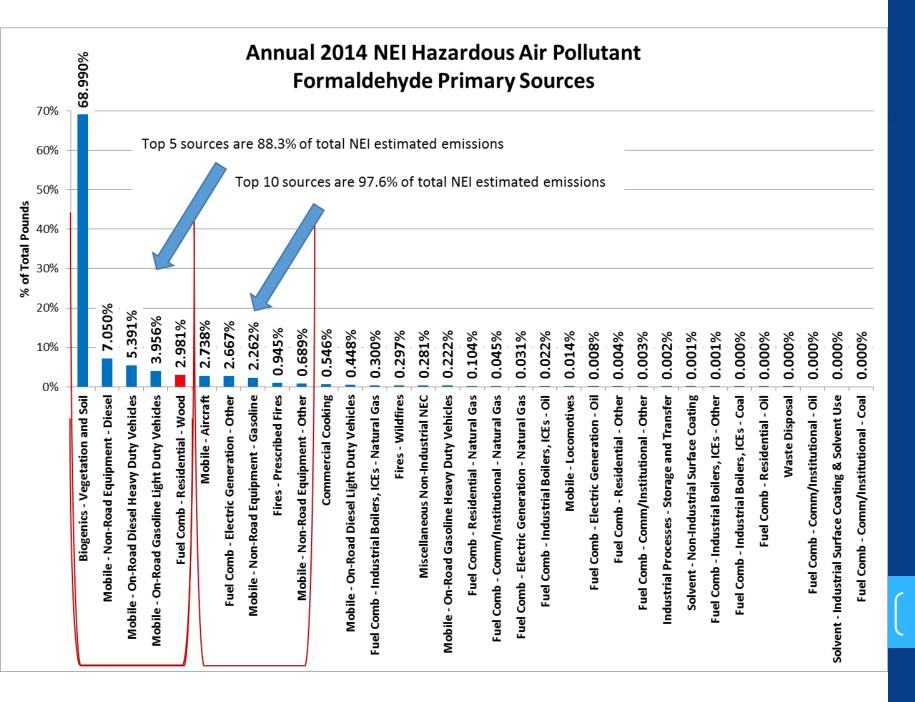
^{3.} https://woodsmokepollution.org/toxins.html

Hazardous Air Pollutants

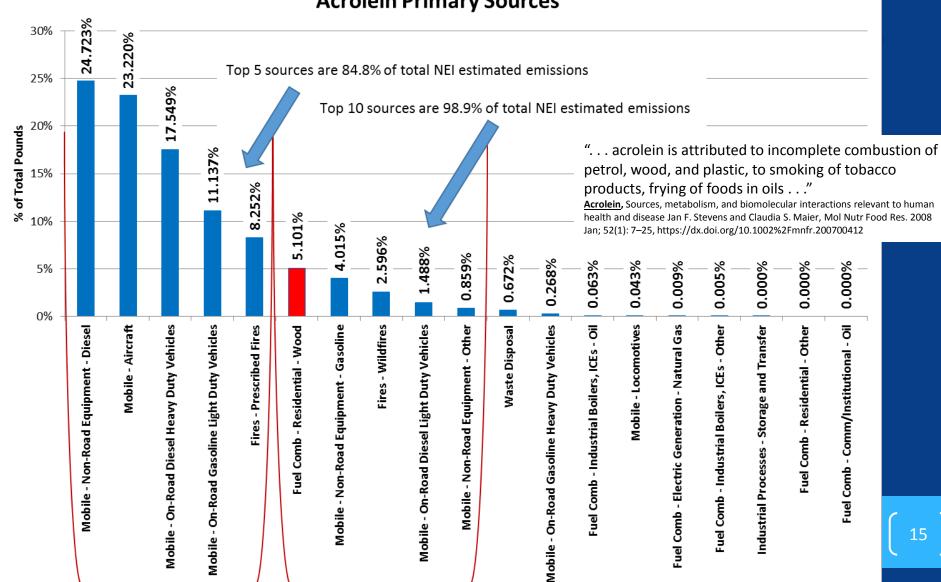
Pounds of Hazardous Air Pollutants per Cord of Wood Burned Estimated at 1 cord = 2,500 pounds

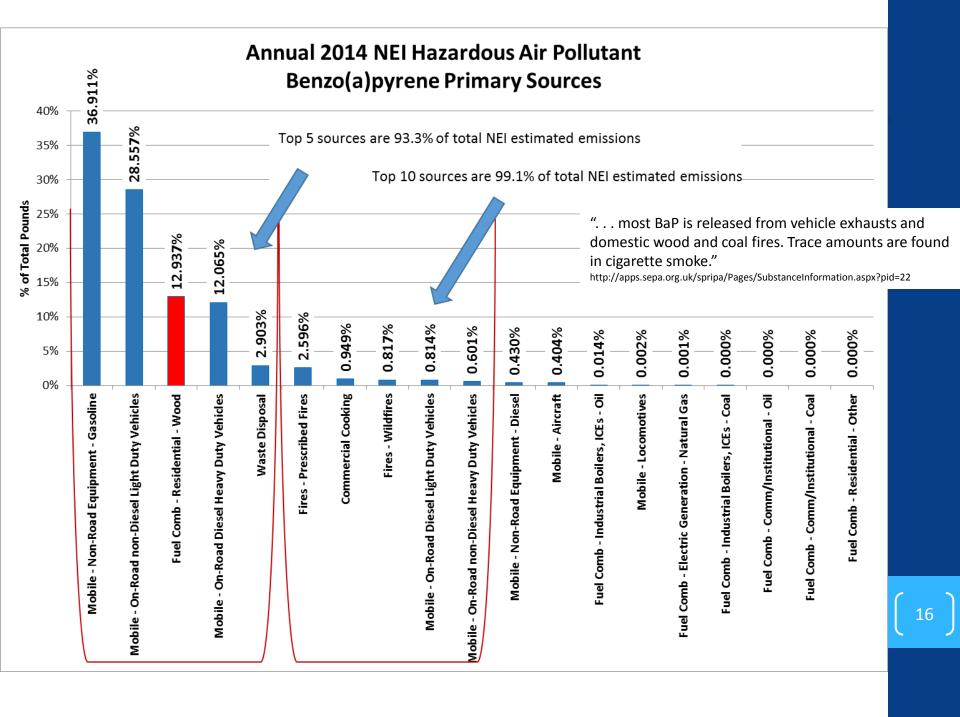

The National Emission Inventory (NEI)


What is the NEI


- a comprehensive and detailed estimate of air emissions of criteria pollutants, criteria precursors, and hazardous air pollutants from air emission sources.
- Available to everyone at:
 - https://www.epa.gov/air-emissions-inventories/2014-nationalemissions-inventory-nei-data
- We can use the NEI to evaluate sources to help prioritize efforts to reduce pollutants from those sources.
 - For example, under Benzene, Agricultural Burning is a source category for Valencia and Sandoval but not for Bernalillo County.
- The NEI identifies 33 hazardous air pollutants associated with Residential Wood fuel combustion.
- Of the 17 fuel combustion sector sources Residential wood burning is 60.8% of the total sector.

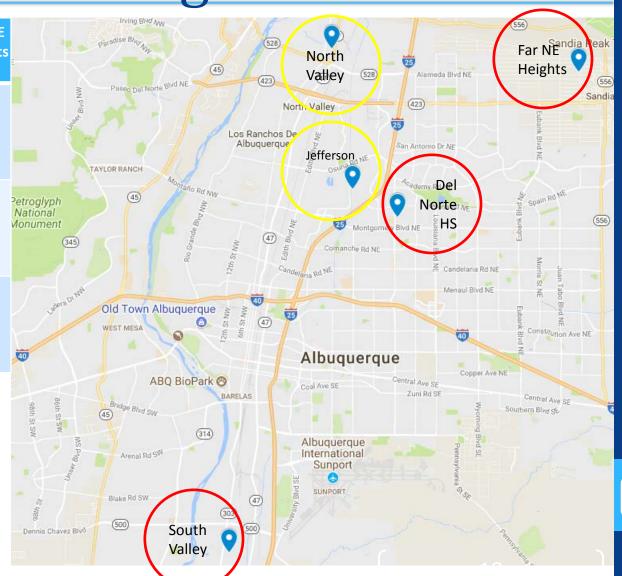
What We Are Looking For


- How the <u>Fuel Comb-Residential-Wood</u> sector compares to the other NEI source sectors
- Keep in mind that part of the Fuel Comb— Residential—Wood sector is seasonal while the NEI is an annual estimate of emissions.
 - Seasonality of the wood burning may have a greater impact in the short term compared to what the NEI is presenting.
 - Benzene
 - Naphthalene
 - Formaldehyde
 - Acrolein
 - Benzo(a)pyrene



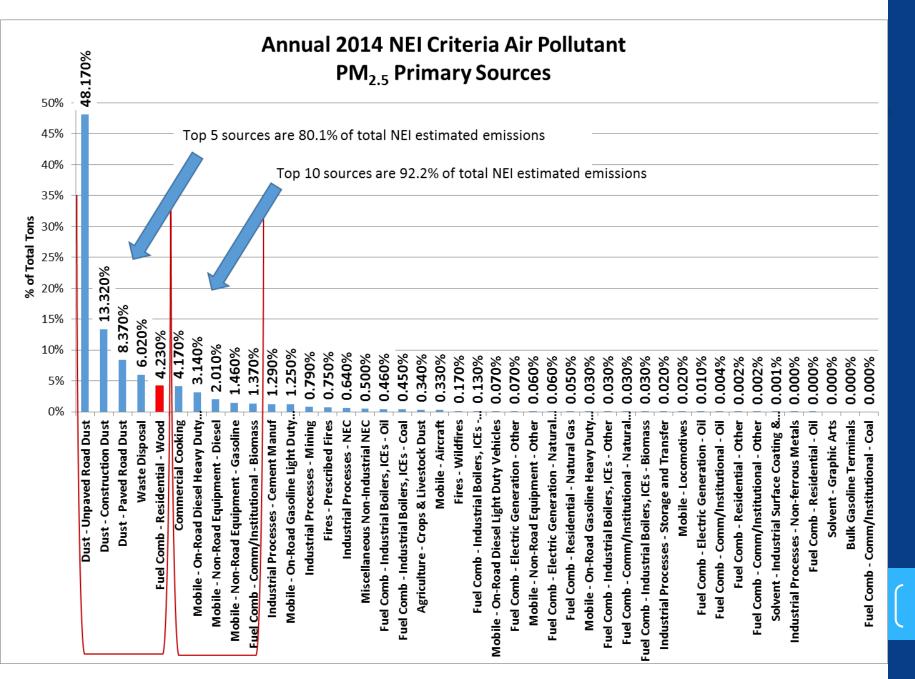
Annual 2014 NEI Hazardous Air Pollutant **Acrolein Primary Sources**

Additional Hazardous Air Pollutants


 There are 28 additional Hazardous Air Pollutants found under the <u>Fuel Comb–Residential–Wood</u> NEI Sector

	Rank of Fuel Comb -	% of all		
	Residential -	% or an		
NEI Pollutant	Wood	Categories		
Cresol/Cresylic Acid (Mixed Isomers)	1	90.9% 59.8%		
o-Xylene Phenol	1	45.8%		
	1	31.1%		
Acenaphthylene	2	35.7%		
Benzo[e]Pyrene	2	31.2%		
Perylene	2	23.6%		
Benzo(a)Fluoranthene Phenanthrene	2	16.5%	18 a	
	3		are in the top	
Anthracene	3	12.8%	n t	
1,3-Butadiene	_	6.8%	ıe t	
Methylchrysene	3	1.8%	op 5	
Benzo[b]Fluoranthene	4	6.5%	5	
Benzo[k]Fluoranthene	4	5.5%		24
Dibenzo[a,h]Anthracene	5	11.1%		are
Fluorene	5	9.3%		i.
Acenaphthene	5	8.6%		the
Indeno[1,2,3-c,d]Pyrene	5	3.1%		to
Mercury	5	2.4%		24 are in the top 10
Benz[a]Anthracene	6	3.1%		0
Acetaldehyde	6	1.5%		
Manganese	6	0.3%		
Cadmium	6	0.1%		
Chrysene	7	3.6%		
Benzo[g,h,i,]Perylene	7	0.6%		
Fluoranthene	11	0.6%		
Pyrene	11	0.4%		
Nickel	12	0.1%		
Toluene	14	0.4%		

Local Monitoring Data


Site	Del Norte (2ZM)	South Valley (2ZV)	Far NE Heights (2ZF)
PM2.5 Hourly	X	X	X
Black Carbon Hourly	X	X	X
Potassium 24 hour, one sample every 3 rd day	X		

- North Valley and Jefferson started PM_{2.5} this year.
- As of 2018 Bernalillo
 County has 5 PM_{2.5} sites,
 this is 50% of all the PM_{2.5}
 monitors in New Mexico.

What We Are Looking For

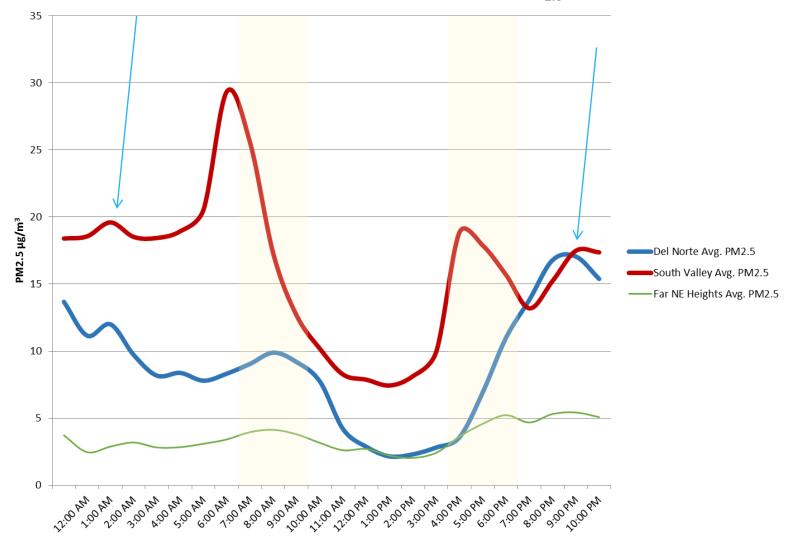
- Increased markers of PM_{2.5}, Black Carbon and Potassium during the winter time wood burning season
- Late evening and early morning increases in these wood burning markers
 - Indicates wood burning activities after the evening and before the morning commuting time period
- Increased frequency in EHD's email alerts
 - winter period (Dec. 2016-Jan. 2017) EHD had 165 email alerts
 - summer period (June-July 2017) EHD had 50 email alerts.

What did we see in the data

44.6% average increase in PM_{2.5} from summer to winter (excl. Foothills)

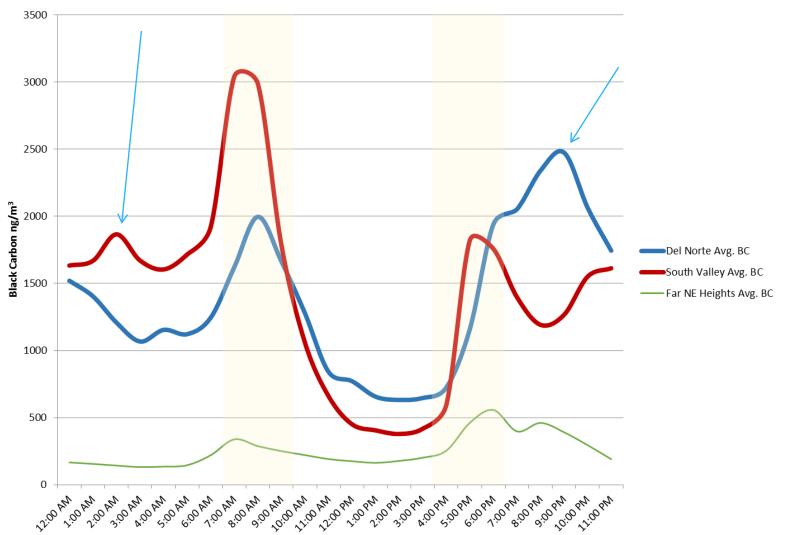
	Del Norte HS	South Valley	Foothills
2015-2016 data	Average μg/m ³	Average μg/m ³	Average μg/m ³
Summer (Mar-Aug)	4.7	5.5	5.3
Winter (Sep-Feb)	6.5	8.3	4.7
% Increase	38.3%	50.9%	-11.3%

104% average increase in Black Carbon from summer to winter (excl. Foothills)

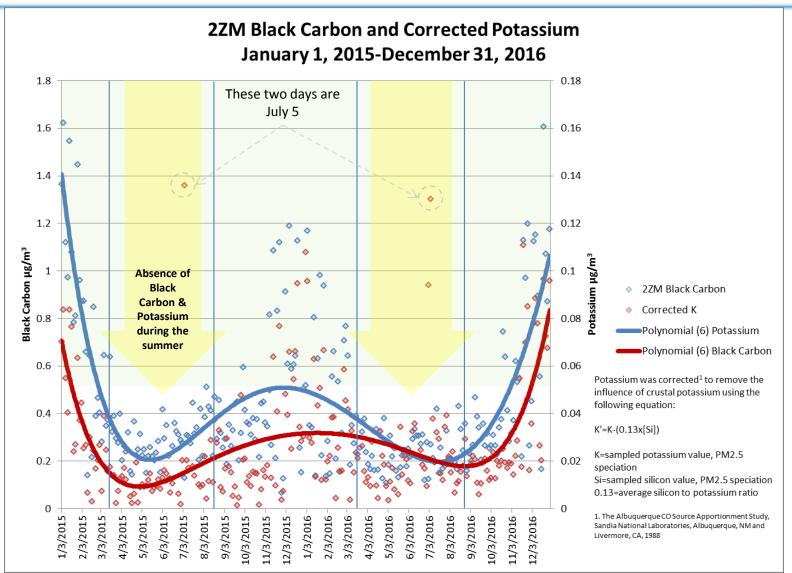

	Del Norte HS	South Valley	Foothills
2015-2016 data	Average μg/m³	Average μg/m ³	Average μg/m ³
Summer (Mar-Aug)	0.280	0.406	0.144
Winter (Sep-Feb)	0.567	0.835	0.223
% Increase	102.5%	105.6%	54.9%

• 101.3% increase in Potassium from summer to winter

2015-2016 data, Del Norte HS	Average Potassium μg/m ³
Summer (Mar-Aug)	0.0169
Winter (Sep-Feb)	0.0339
% Increase	101.3%


What did we see in the data

Evening and early morning impact on fine particulates
 December 2017 Averaged Hourly PM_{2.5}



What did we see in the data

Evening and early morning impact on Black Carbon
 December 2017 Averaged Hourly Black Carbon

Seasonal Variations

Conclusions

- The NEI and the local monitoring data point toward wood burning as an impact on area residents
- Black Carbon and Potassium show wood burning activity
- NEI data clearly identifies the Fuel Comb

 Residential
 Wood
 Sector as a significant source of air pollutants
 - Due to the seasonality of wood burning the impact could be more significant than the NEI data presents

Potential Next Steps

- Wood Burning Activity Survey
- Levoglucosan, Mannosan, Galactosan (anhydrous sugars)
 - Organic compounds closely related to biomass burning
 - Ratios can help determine wood/biomass types burned
 - Able to use existing sampling equipment
 - Laboratory analysis by Gas Chromatograph

- instrument measuring concentrations of light absorbing particles
- 7 different wavelength channels based on differences in particle size and material, including black carbon and CO₂ (additional sensor).
- Potential for identifying particulate sources based on wavelength UV absorption
- This could help differentiate wood burning and traffic contributions
- Mobile autoGC monitoring
 - Provide data on up to 57 different hydrocarbon pollutants including benzene, toluene, and formaldehyde (https://cas-en.com/turn-key-systems/pams/)
 - Some systems are easy to set up and easy to use

Advanced Real-Time Measurement of Black Carbon

with Aethalometer® Model AE33

- Dual Spot™ Technology for filter loading
- effect compensation
 Source apportionment Real-time Biomas
- burning vs. Fossil fuel determination
- Full spectrum 7-Wavelenght analysis
- Connect with TCA-08 for "OC/EC" analysis

Open Discussion